46 research outputs found

    Skewed X-inactivation is common in the general female population

    Get PDF
    X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants

    Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children

    No full text
    BACKGROUND: Perinatal environmental factors have been associated with the metabolic programming of children and consequent disease risks in later life. Epigenetic modifications that lead to altered gene expression may be involved. Here, we study early life environmental and constitutional factors in association with the DNA methylation of leptin (LEP), a non-imprinted gene implicated in appetite regulation and fat metabolism. METHODS: We investigated maternal education, breastfeeding, and constitutional factors of the child at 17 mo of age. We measured the DNA methylation of LEP in whole blood and the concentration of leptin in serum. RESULTS: Duration of breastfeeding was negatively associated with LEP methylation. Low education (<= 12 y of education) was associated with higher LEP methylation. Boys had higher birth weight and lower LEP methylation than girls. An inverse association was established between birth weight per SD increase (+584g) and LEP methylation. High BMI and leptin concentration were associated with lower methylation of LEP. CONCLUSION: The early life environment and constitutional factors of the child are associated with epigenetic variations in LEP. Future studies must reveal whether breastfeeding and the associated decrease in LEP methylation is an epigenetic mechanism contributing to the protective effect of breastfeeding against obesity
    corecore