21 research outputs found

    Towards the controlled enzymatic synthesis of LNA containing oligonucleotides

    Get PDF
    Enzymatic, de novo XNA synthesis represents an alternative method for the production of long oligonucleotides containing chemical modifications at distinct locations. While such an approach is currently developed for DNA, controlled enzymatic synthesis of XNA remains at a relative state of infancy. In order to protect the masking groups of 3′-O-modified LNA and DNA nucleotides against removal caused by phosphatase and esterase activities of polymerases, we report the synthesis and biochemical characterization of nucleotides equipped with ether and robust ester moieties. While the resulting ester-modified nucleotides appear to be poor substrates for polymerases, ether-blocked LNA and DNA nucleotides are readily incorporated into DNA. However, removal of the protecting groups and modest incorporation yields represent obstacles for LNA synthesis via this route. On the other hand, we have also shown that the template-independent RNA polymerase PUP represents a valid alternative to the TdT and we have also explored the possibility of using engineered DNA polymerases to increase substrate tolerance for such heavily modified nucleotide analogs

    Evaluation of 3′-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides

    No full text
    International audienceChemically modified oligonucleotides have advanced as important therapeutic tools as reflected by the recent advent of mRNA vaccines and the FDA-approval of various siRNA and antisense oligonucleotides. These sequences are typically accessed by solid-phase synthesis which despite numerous advantages is restricted to short sequences and displays a limited tolerance to functional groups. Controlled enzymatic synthesis is an emerging alternative synthetic methodology that circumvents the limitations of traditional solid-phase synthesis. So far, most approaches strived to improve controlled enzymatic synthesis of canonical DNA and no potential routes to access xenonucleic acids (XNAs) have been reported. In this context, we have investigated the possibility of using phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and locked nucleic acid (LNA) oligonucleotides. Phosphate is ubiquitously employed in natural systems and we demonstrate that this group displays most characteristics required for controlled enzymatic synthesis. We have devised robust synthetic pathways leading to these challenging compounds and we have discovered a hitherto unknown phosphatase activity of various DNA polymerases. These findings open up directions for the design of protected DNA and XNA nucleoside triphosphates for controlled enzymatic synthesis of chemically modified nucleic acids

    Towards the enzymatic synthesis of phosphorothioate containing LNA oligonucleotides

    No full text
    International audienceTherapeutic oligonucleotides require the addition of multiple chemical modifications to the nucleosidic scaffold in order to improve their drug delivery efficiency, cell penetration capacity, biological stability, and pharmacokinetic properties. This chemical modification pattern is often accompanied by a synthetic burden and by limitations in sequence length. Here, we have synthesized a nucleoside triphosphate analog bearing two simultaneous modifications at the level of the sugar (LNA) and the backbone (thiophosphate) and have tested its compatibility with enzymatic DNA synthesis which could abrogate some of these synthetic limitations. While this novel analog is not as well tolerated by polymerases compared to the corresponding α-thio-dTTP or LNA-TTP, α -thio-LNA-TTP can readily be used for enzymatic synthesis on universal templates for the introduction of phosphorothioated LNA nucleotides

    Late-Stage Deoxyfluorination of Alcohols with PhenoFluor

    No full text
    An operationally simple protocol for the selective deoxyfluorination of structurally complex alcohols is presented. Several fluorinated derivatives of natural products and pharmaceuticals have been prepared to showcase the potential of the method for late-stage diversification and its functional group compatibility. A series of simple guidelines for predicting the selectivity in substrates with multiple alcohols is given

    Alkali Base-Initiated Michael Addition/Alkyne Carbocyclization Cascades

    No full text
    A new cascade reaction involving an intramolecular Michael addition followed by an alkyne carbocyclization is presented. The reaction is promoted by a substoichiometric amount of KHMDS and represents one of the rare examples where the carbocyclization of an unactivated alkyne is mediated by an alkali metal base, under mild conditions. The reaction allows the generation of functionally dense, stereochemically defined, tricyclic structures possessing three adjacent stereocenters in good yields and with high stereoselectivity

    Artificial nucleotide codons for enzymatic DNA synthesis

    No full text
    Herein, we report the high yielding solid-phase synthesis of unmodified and chemically modified trinucleotide triphosphates (dN3TPs). These synthetic codons can be used for enzymatic DNA synthesis provided their scaffold is stabilized with phosphorothioate units. Enzymatic synthesis with three rather than one letter nucleotides will be useful for the production of xenonucleic acids (XNAs) and for in vitro selection of modified functional nucleic acids
    corecore