53 research outputs found

    An investigation into the tether length and substitution pattern of arene-substituted complexes for asymmetric transfer hydrogenation of ketones

    No full text
    A series of Ru(II) catalysts were prepared and tested in the asymmetric transfer hydrogenation of ketones. The catalyst containing a "4-carbon" tether gave the fastest rates of ketone reduction. This is due to both increased rate of regeneration of hydride "Ru-H" and increased rate of ketone reduction. Several classes of ketone were reduced in enantiomeric excesses of up to 97%. Substituents on the arene ring of the catalyst influence the reaction rate and enantioselectivity

    The thermal degradation of some alkali metal salts of poly(itaconic acid)

    No full text
    The Li-, Na- and K salts of poly(itaconic acid) (PIA) were prepared by treating the polyacid with the corresponding aqueous hydroxide. The resulting polysalts were analysed by elemental analysis, FTIR spectroscopy and thermogravimetry. The results indicate that the polysalts are thermally more stable than the parent PIA, they all degrade in a similar manner and somewhat more complexly than the poly(methacrylic acid) salts

    Nickel and Palladium Complexes with New Phosphinito-Imine Ligands and Their Application as Ethylene Oligomerization Catalysts

    Get PDF
    Phosphinito-imines, a new class of P,N donors, are readily generated by reaction of bulky arylamide anions [R2CONAr]− (R2 = Me or t-Bu; Ar = 2,6-i-Pr2C6H4) with chlorophosphines ClP(R1)2. In solution, free phosphinito-imines exist in equilibrium with the corresponding amidophosphine tautomers, containing a nitrogen-bound P(R1)2 group. However, reacting the tautomer mixtures with metal precursor complexes, such as NiBr2(dme) or PdCl2(cod), selectively affords stable phosphinito-imine complexes MX2(P-N) (M = Ni, Pd) in excellent yields. These complexes are diamagnetic and exhibit square-planar structures in the solid state, but in solution, the Ni derivatives exchange with a small amount of the corresponding high-spin tetrahedral isomers. On treatment with MMAO or DEAC, NiX2(P-N) complexes become active ethylene oligomerization catalysts, affording mainly butenes along with smaller amounts of hexenes and octenes. The activity and the selectivity of these catalysts depend on the structure of the phosphinito-imine ligand and the cocatalyst used. When activated with DEAC, complexes containing the P(i-Pr)2 moiety are extremely active, achieving TOFs over 106 mol C2H4/mol Ni·h and high selectivity for butenesPeer reviewe
    corecore