19 research outputs found

    Oxidized LDLs inhibit TLR-induced IL-10 production by monocytes : a new aspect of pathogen-accelerated atherosclerosis

    Get PDF
    It is widely accepted that oxidized low-density lipoproteins and local infections or endotoxins in circulation contribute to chronic inflammatory process at all stages of atherosclerosis. The hallmark cells of atherosclerotic lesions—monocytes and macrophages—are able to detect and integrate complex signals derived from lipoproteins and pathogens, and respond with a spectrum of immunoregulatory cytokines. In this study, we show strong inhibitory effect of oxLDLs on anti-inflammatory interleukin-10 production by monocytes responding to TLR2 and TLR4 ligands. In contrast, pro-inflammatory tumor necrosis factor secretion was even slightly increased, when stimulated with lipopolysaccharide from Porphyromonas gingivalis—an oral pathogen associated with atherosclerosis. The oxLDLs modulatory activity may be explained by altered recognition of pathogen-associated molecular patterns, which involves serum proteins, particularly vitronectin. We also suggest an interaction between vitronectin receptor, CD11b, and TLR2. The presented data support a novel pathway for pathogen-accelerated atherosclerosis, which relies on oxidized low-density lipoprotein-mediated modulation of anti-inflammatory response to TLR ligands. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10753-012-9472-3) contains supplementary material, which is available to authorized users

    Chemerin and the recruitment of NK cells to diseased skin

    Get PDF
    Natural killer (NK) cells play a major role in the initial control of many viral pathogens and in the rejection of tumors. Consistent with their roles as immune sentinels, NK cells are found in inflamed skin, including lichen planus, psoriasis and atopic dermatitis (AD) lesions. In oral lichen planus lesions, the recruitment as well as intradermal colocalization of NK cells and pDC (plasmacytoid dendritic cells) appear to be mediated by chemerin, a recently identified protein ligand for chemokine-like receptor 1 (CMKLR1), a chemoattractant receptor expressed by both cell types. Dendritic cells can regulate NK cell activity, and NK cells can regulate DC-mediated responses. Since chemerin was recently implicated in recruitment of pDC to psoriatic skin, in this work we determined whether chemerin facilitates interactions between NK and pDC in psoriatic plaques through controlling influx of NK cells to diseased skin. We demonstrate that circulating NK cells from normal donors as well as psoriasis and AD patients respond similarly in functional migration assays to chemerin. However, differences in the distribution of NK cells and pDC in skin lesions suggest that recruitment of both NK cells and pDC is unlikely to be controlled solely by chemerin

    DNA structures decorated with cathepsin G/secretory leukocyte proteinase inhibitor stimulate IFNI production by plasmacytoid dendritic cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) and neutrophils are detected in psoriatic skin lesions and implicated in the pathogenesis of psoriasis. pDCs specialize in the production of type I interferon (IFNI), a cytokine that plays an important role in chronic autoimmune-like inflammation, including psoriasis. Here, we demonstrate that IFNI production in pDCs is stimulated by DNA structures containing the neutrophil serine protease cathepsin G (CatG) and the secretory leukocyte protease inhibitor (SLPI), which is a controlling inhibitor of serine proteases. We also demonstrate the presence of neutrophil-derived DNA structures containing CatG and SLPI in lesional skin samples from psoriasis patients. These findings suggest a previously unappreciated role for CatG in psoriasis by linking CatG and its inhibitor SLPI to the IFNI-dependent regulation of immune responses by pDCs in psoriatic skin

    Bradykinin and desArg10kallidindes-Arg^{10}-kallidin enhance the adhesion of polymorphonuclear leukocytes to extracellular matrix proteins and endothelial cells

    No full text
    Bradykinin-related peptides (kinins) are well known to contribute to leukocyte recruitment to inflammatory foci; however, a role of these universal pro-inflammatory mediators in the first step of this process, i.e. the leukocyte adhesion to endothelial cells, is not well understood. In this work we found that bradykinin and desArg10kallidindes-Arg^{10}-kallidin enhance the adhesion of polymorphonuclear bloods cells (PMN) to fibrinogen and fibronectin. Also, the PMN adherence to endothelial cells of HMEC-1 line strongly increased after stimulation by kinins, particularly desArg10kallidinndes-Arg^{10}-kallidinn, or when PMN were co-stimulated with bradykinin and interleukin1βinterleukin-1\beta. These effects were attenuated after PMN treatment with a specific inhibitor of carboxypeptidases, which convert kinins to their des-Arg metabolites. The kinin peptides were also able to change the Mac-1 integrin expression on the PMN surface. These results suggest a regulatory effect of kinins on leukocyte adhesion to endothelial wall, providing new aspects of the leukocyte infiltration into inflamed tissues

    Secretory leukocyte protease inhibitor is present in circulating and tissue-recruited human eosinophils and regulates their migratory function

    Get PDF
    Eosinophils and secretory leukocyte protease inhibitor (SLPI) are both associated with Th2 immune responses and allergic diseases, but whether the fact that they are both implicated in these conditions is pathophysiologically related remains unknown. Here we demonstrate that human eosinophils derived from normal individuals are one of the major sources of SLPI among circulating leukocytes. SLPI was found to be stored in the crystalline core of eosinophil granules, and its dislocation/rearrangement in the crystalline core likely resulted in changes in immunostaining for SLPI in these cells. High levels of SLPI were also detected in blood eosinophils from patients with allergy-associated diseases marked by eosinophilia. These include individuals with eosinophilic granulomatosis with polyangiitis (EGPA) and atopic dermatitis (AD), who were also found to have elevated SLPI levels in their plasma. In addition to the circulating eosinophils, diseased skin of AD patients also contained SLPI-positive eosinophils. Exogenous, recombinant SLPI increased numbers of migratory eosinophils and supported their chemotactic response to CCL11, one of the key chemokines that regulate eosinophil migratory cues. Together, these findings suggest a role for SLPI in controlling Th2 pathophysiologic processes via its impact on and/or from eosinophils
    corecore