5 research outputs found

    Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4

    Get PDF
    Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify the ditiocarb–copper complex as the metabolite of disulfiram that is responsible for its anti-cancer effects, and provide methods to detect preferential accumulation of the complex in tumours and candidate biomarkers to analyse its effect on cells and tissues. Finally, our functional and biophysical analyses reveal the molecular target of disulfiram’s tumour-suppressing effects as NPL4, an adaptor of p97 (also known as VCP) segregase, which is essential for the turnover of proteins involved in multiple regulatory and stress-response pathways in cells

    Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4

    Get PDF
    Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify the ditiocarb–copper complex as the metabolite of disulfiram that is responsible for its anti-cancer effects, and provide methods to detect preferential accumulation of the complex in tumours and candidate biomarkers to analyse its effect on cells and tissues. Finally, our functional and biophysical analyses reveal the molecular target of disulfiram’s tumour-suppressing effects as NPL4, an adaptor of p97 (also known as VCP) segregase, which is essential for the turnover of proteins involved in multiple regulatory and stress-response pathways in cells

    Actionable cancer vulnerability due to translational arrest, p53 aggregation and ribosome biogenesis stress evoked by the disulfiram metabolite CuET.

    Get PDF
    We would like to thank M.Oren (Weizmann Institute of Science) for kindly providing the MDM2 antibodies, the core facility for Bioinformatics and Expression Analysis (BEA, Karolinska, Huddinge) for assisting in massive parallel sequencing and computational infrastructure, as well as E Dratkiewicz, AS Nilsson, and JF Martinez for excellent technical assistance.Drug repurposing is a versatile strategy to improve current therapies. Disulfiram has long been used in the treatment of alcohol dependency and multiple clinical trials to evaluate its clinical value in oncology are ongoing. We have recently reported that the disulfiram metabolite diethyldithiocarbamate, when combined with copper (CuET), targets the NPL4 adapter of the p97VCP segregase to suppress the growth of a spectrum of cancer cell lines and xenograft models in vivo. CuET induces proteotoxic stress and genotoxic effects, however important issues concerning the full range of the CuET-evoked tumor cell phenotypes, their temporal order, and mechanistic basis have remained largely unexplored. Here, we have addressed these outstanding questions and show that in diverse human cancer cell models, CuET causes a very early translational arrest through the integrated stress response (ISR), later followed by features of nucleolar stress. Furthermore, we report that CuET entraps p53 in NPL4-rich aggregates leading to elevated p53 protein and its functional inhibition, consistent with the possibility of CuET-triggered cell death being p53-independent. Our transcriptomics profiling revealed activation of pro-survival adaptive pathways of ribosomal biogenesis (RiBi) and autophagy upon prolonged exposure to CuET, indicating potential feedback responses to CuET treatment. The latter concept was validated here by simultaneous pharmacological inhibition of RiBi and/or autophagy that further enhanced CuET's tumor cytotoxicity, using both cell culture and zebrafish in vivo preclinical models. Overall, these findings expand the mechanistic repertoire of CuET's anti-cancer activity, inform about the temporal order of responses and identify an unorthodox new mechanism of targeting p53. Our results are discussed in light of cancer-associated endogenous stresses as exploitable tumor vulnerabilities and may inspire future clinical applications of CuET in oncology, including combinatorial treatments and focus on potential advantages of using certain validated drug metabolites, rather than old, approved drugs with their, often complex, metabolic profiles.This work was funded by the following grants: the Swedish Cancer Society (grant number: 170176), the Swedish Research Council (VR-MH 2014-46602-117891-30), Novo Nordisk Foundation (NNF20OC0060590), Danish National Research Foundation (project CARD, DNRF 125), the Danish Cancer Society (R204-A12617-B153), DFF 1026-00241B (all granted to JB), and the Grant agency of the Czech Republic: GACR 20-28685S (granted to ZS and MM). Open access funding provided by Karolinska Institute.S

    Drug–Drug Interactions of Cannabidiol with Standard-of-Care Chemotherapeutics

    No full text
    Cannabidiol (CBD) is an easily accessible and affordable Marijuana (Cannabis sativa L.) plant derivative with an extensive history of medical use spanning thousands of years. Interest in the therapeutic potential of CBD has increased in recent years, including its anti-tumour properties in various cancer models. In addition to the direct anticancer effects of CBD, preclinical research on numerous cannabinoids, including CBD, has highlighted their potential use in: (i) attenuating chemotherapy-induced adverse effects and (ii) enhancing the efficacy of some anticancer drugs. Therefore, CBD is gaining popularity as a supportive therapy during cancer treatment, often in combination with standard-of-care cancer chemotherapeutics. However, CBD is a biologically active substance that modulates various cellular targets, thereby possibly resulting in unpredictable outcomes, especially in combinations with other medications and therapeutic modalities. In this review, we summarize the current knowledge of CBD interactions with selected anticancer chemotherapeutics, discuss the emerging mechanistic basis for the observed biological effects, and highlight both the potential benefits and risks of such combined treatments. Apart from the experimental and preclinical results, we also indicate the planned or ongoing clinical trials aiming to evaluate the impact of CBD combinations in oncology. The results of these and future trials are essential to provide better guidance for oncologists to judge the benefit-versus-risk ratio of these exciting treatment strategies. We hope that our present overview of this rapidly advancing field of biomedicine will inspire more preclinical and clinical studies to further our understanding of the underlying biology and optimize the benefits for cancer patients
    corecore