745 research outputs found
Application of the Exact Muffin-Tin Orbitals Theory: the Spherical Cell Approximation
We present a self-consistent electronic structure calculation method based on
the {\it Exact Muffin-Tin Orbitals} (EMTO) Theory developed by O. K. Andersen,
O. Jepsen and G. Krier (in {\it Lectures on Methods of Electronic Structure
Calculations}, Ed. by V. Kumar, O.K. Andersen, A. Mookerjee, Word Scientific,
1994 pp. 63-124) and O. K. Andersen, C. Arcangeli, R. W. Tank, T.
Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta, (in {\it Mat. Res. Soc.
Symp. Proc.} {\bf 491}, 1998 pp. 3-34). The EMTO Theory can be considered as an
{\it improved screened} KKR (Korringa-Kohn-Rostoker) method which is able to
treat large overlapping potential spheres. Within the present implementation of
the EMTO Theory the one electron equations are solved exactly using the Green's
function formalism, and the Poisson's equation is solved within the {\it
Spherical Cell Approximation} (SCA). To demonstrate the accuracy of the
SCA-EMTO method test calculations have been carried out.Comment: 20 pages, 10 figure
Visualization of and Software for Omnibus Test Based Change Detected in a Time Series of Polarimetric SAR Data
Based on an omnibus likelihood ratio test statistic for the equality of several variance-covariance matrices following the complex Wishart distribution and a factorization of this test statistic with associated p-values, change analysis in a time series of multilook polarimetric synthetic aperture radar data in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change occurs. Using airborne EMISAR and spaceborne RADARSAT-2 data, this article focuses on change detection based on the p-values, on visualization of change at pixel as well as segment level, and on computer software
First-principle Wannier functions and effective lattice fermion models for narrow-band compounds
We propose a systematic procedure for constructing effective lattice fermion
models for narrow-band compounds on the basis of first-principles electronic
structure calculations. The method is illustrated for the series of
transition-metal (TM) oxides: SrVO, YTiO, VO, and
YMoO. It consists of three parts, starting from LDA. (i)
construction of the kinetic energy Hamiltonian using downfolding method. (ii)
solution of an inverse problem and construction of the Wannier functions (WFs)
for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb
interactions in the basis of \textit{auxiliary} WFs, for which the
kinetic-energy term is set to be zero. The last step is necessary in order to
avoid the double counting of the kinetic-energy term, which is included
explicitly into the model. The screened Coulomb interactions are calculated in
a hybrid scheme. First, we evaluate the screening caused by the change of
occupation numbers and the relaxation of the LMTO basis functions, using the
conventional constraint-LDA approach, where all matrix elements of
hybridization involving the TM orbitals are set to be zero. Then, we switch
on the hybridization and evaluate the screening associated with the change of
this hybridization in RPA. The second channel of screening is very important,
and results in a relatively small value of the effective Coulomb interaction
for isolated bands. We discuss details of this screening and consider
its band-filling dependence, frequency dependence, influence of the lattice
distortion, proximity of other bands, and the dimensionality of the model
Hamiltonian.Comment: 35 pages, 25 figure
Construction of transferable spherically-averaged electron potentials
A new scheme for constructing approximate effective electron potentials
within density-functional theory is proposed. The scheme consists of
calculating the effective potential for a series of reference systems, and then
using these potentials to construct the potential of a general system. To make
contact to the reference system the neutral-sphere radius of each atom is used.
The scheme can simplify calculations with partial wave methods in the
atomic-sphere or muffin-tin approximation, since potential parameters can be
precalculated and then for a general system obtained through simple
interpolation formulas. We have applied the scheme to construct electron
potentials of phonons, surfaces, and different crystal structures of silicon
and aluminum atoms, and found excellent agreement with the self-consistent
effective potential. By using an approximate total electron density obtained
from a superposition of atom-based densities, the energy zero of the
corresponding effective potential can be found and the energy shifts in the
mean potential between inequivalent atoms can therefore be directly estimated.
This approach is shown to work well for surfaces and phonons of silicon.Comment: 8 pages (3 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
Role of C in MgC_xNi_3 investigated from first principles
The influence of vacancies in the sub-lattice of , on its
structural, electronic and magnetic properties are studied by means of the
density-functional based Korringa-Kohn-Rostoker Green's function method
formulated in the atomic sphere approximation. Disorder is taken into account
by means of coherent-potential approximation. Characterizations representing
the change in the lattice properties include the variation in the equilibrium
lattice constants, bulk modulus and pressure derivative of the bulk modulus,
and that of electronic structure include the changes in the, total, partial and
-resolved density of states. The incipient magnetic properties are
studied by means of fixed-spin moment method of alloy theory, together in
conjunction with the phenomenological Ginzburg-Landau equation for magnetic
phase transition. The first-principles calculations reveal that due to the
breaking of the - bonds, some of the 3d states, which were lowered
in energy due to strong hybridization, are transfered back to higher energies
thereby increasing the itinerant character in the material. The Bloch spectral
densities evaluated at the high symmetry points however reveal that the charge
redistribution is not uniform over the cubic Brillouin zone, as new states are
seen to be created at the point, while a shift in the states on the
energy scale are seen at other high symmetry points
Orbital densities functional
Local density approximation (LDA) to the density functional theory (DFT) has
continuous derivative of total energy as a number of electrons function and
continuous exchange-correlation potential, while in exact DFT both should be
discontinuous as number of electrons goes through an integer value. We propose
orbital densities functional (ODF) (with orbitals defined as Wannier functions)
that by construction obeys this discontinuity condition. By its variation
one-electron equations are obtained with potential in the form of projection
operator. The operator increases a separation between occupied and empty bands
thus curing LDA deficiency of energy gap value systematic underestimation.
Orbital densities functional minimization gives ground state orbital and total
electron densities. The ODF expression for the energy of orbital densities
fluctuations around the ground state values defines ODF fluctuation Hamiltonian
that allows to treat correlation effects. Dynamical mean-field theory (DMFT)
was used to solve this Hamiltonian with quantum Monte Carlo (QMC) method for
effective impurity problem. We have applied ODF method to the problem of
metal-insulator transition in lanthanum trihydride LaH_{3-x}. In LDA
calculations ground state of this material is metallic for all values of
hydrogen nonstoichiometry x while experimentally the system is insulating for x
< 0.3. ODF method gave paramagnetic insulator solution for LaH_3 and LaH_{2.75}
but metallic state for LaH_{2.5}.Comment: 35 pages, 5 figure
Compositional disorder and its influence on the structural, electronic and magnetic properties of MgC(Ni_{1-x}Co_{x})_{3} alloys using first-principles
First-principles, density-functional based electronic structure calculations
are carried out for MgC(Ni_{1-x}Co_{x})_{3} alloys over the concentration range
0\leq x\leq1, using Korringa-Kohn-Rostoker coherent-potential approximation
(KKR CPA) method in the atomic sphere approximation (ASA). The self-consistent
calculations are used to study the changes as a function of x in the equation
of state parameters, total and partial densities of states, magnetic moment and
the on-site exchange interaction parameter. To study the magnetic properties as
well as its volume dependence, fixed-spin moment calculations in conjunction
with the phenomenological Landau theory are employed. The salient features that
emerge from these calculations are (i) a concentration independent variation in
the lattice parameter and bulk modulus at x~0.75 with an anomaly in the
variation of the pressure derivative of bulk modulus, (ii) the fixed-spin
moment based corrections to the overestimated magnetic ground state for 0.0\leq
x\leq0.3 alloys, making the results consistent with the experiments, and (iii)
the possibility of multiple magnetic states at x~0.75, which, however, requires
further improvements in the calculations
- …