257 research outputs found

    Mapping localized surface plasmons within silver nanocubes using cathodoluminescence hyperspectral imaging

    Get PDF
    Localized surface plasmons within silver nanocubes less than 50 nm in size are investigated using high resolution cathodoluminescence hyperspectral imaging. Multivariate statistical analysis of the multidimensional luminescence dataset allows both the identification of distinct spectral features in the emission and the mapping of their spatial distribution. These results show a 490 nm peak emitted from the cube faces, with shorter wavelength luminescence coming from the vertices and edges; this provides direct experimental confirmation of theoretical predictions

    Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment

    Get PDF
    Gold nanohexapods represent a novel class of optically tunable nanostructures consisting of an octahedral core and six arms grown on its vertices. By controlling the length of the arms, their localized surface plasmon resonance peaks could be tuned from the visible to the near-infrared region for deep penetration of light into soft tissues. Herein we compare the in vitro and in vivo capabilities of Au nanohexapods as photothermal transducers for theranostic applications by benchmarking against those of Au nanorods and nanocages. While all these Au nanostructures could absorb and convert near-infrared light into heat, Au nanohexapods exhibited the highest cellular uptake and the lowest cytotoxicity in vitro for both the as-prepared and PEGylated nanostructures. In vivo pharmacokinetic studies showed that the PEGylated Au nanohexapods had significant blood circulation and tumor accumulation in a mouse breast cancer model. Following photothermal treatment, substantial heat was produced in situ and the tumor metabolism was greatly reduced for all these Au nanostructures, as determined with ^(18)F-flourodeoxyglucose positron emission tomography/computed tomography (^(18)F-FDG PET/CT). Combined together, we can conclude that Au nanohexapods are promising candidates for cancer theranostics in terms of both photothermal destruction and contrast-enhanced diagnosis

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Porous Carbon Powders Prepared by Ultrasonic Spray Pyrolysis

    Full text link

    Porous MoS2 Synthesized by Ultrasonic Spray Pyrolysis

    No full text

    Synthesis of Core@Shell Nanostructures in a Continuous Flow Droplet Reactor: Controlling Structure through Relative Flow Rates

    No full text
    Bimetallic nanostructures are primarily synthesized in small volume batches. However, droplet-based reactors are receiving attention due to their ability to maintain thermal and compositional equilibrium within and between droplets, enabling flow operations for inline analyses and the scale-up of nanomaterial syntheses. Here, the syntheses of shape-controlled core@shell Au@Pd nanostructures with variable shell thicknesses are reported through control of the relative flow rates of reagents within the microreactor. Specifically, Pd shells were grown on cubic or octahedral Au seeds, selected as a model system. In batch reactions, shell thickness is determined by precursor concentration; however, as shown here, precursor feedstock concentration can be held constant, with the precursor concentration within the droplets being controlled through relative flow rates. This approach allows process conditions to be modified inline rather than from batch to batch to achieve particles with different shell thicknesses, and this procedure should be applicable to other multicomponent systems

    Alkene Hydrosilylation on Oxide-supported Pt-ligand Single-site Catalysts

    No full text
    Heterogeneous single-site catalysts (SSCs), widely regarded as promising next-generation catalysts, blend the easy recovery of traditional heterogeneous catalysts with desired features of homogeneous catalysts: high fraction of active sites and uniform metal centers. We previously reported the synthesis of Pt-ligand SSCs through a novel metal-ligand self-assembly method on MgO, CeO2_2, and Al2_2O3_3 supports (J. Catal. 2018, 365, 303-312). Here, we present their applications in the industrially-relevant alkene hydrosilylation reaction, with 95% yield achieved under mild conditions. As expected, they exhibit better metal utilization efficiency than traditional heterogeneous Pt catalysts. The comparison with commercial catalysts (Karstedt and Speier) reveals several advantages of these SSCs: higher selectivity, less colloidal Pt formation, less alkene isomerization/hydrogenation, and better tolerance towards functional groups in substrates. Despite some leaching, our catalysts exhibit satisfactory recyclability and the singlesite structure remains intact on oxide supports after reaction. Pt single-sites were proved to be the main active sites rather than colloidal Pt formed during the reaction. An induction period is observed in which Pt sites are activated by Cl detachment and replacement by reactant alkenes. The most active species likely involves temporary detachment of Pt from ligand or support. Catalytic performance of Pt SSCs is sensitive to the ligand and support choices, enabling fine tuning of Pt sites. This work highlights the application of heterogeneous SSCs created by the novel metal-ligand self-assembly strategy in an industrially-relevant reaction. It also offers a potential catalyst for future industrial hydrosilylation applications with several improvements over current commercial catalysts

    Alkene Hydrosilylation on Oxide‐Supported Pt‐Ligand Single‐Site Catalysts

    No full text
    Heterogeneous single-site catalysts (SSCs), widely regarded as promising next-generation catalysts, blend the easy recovery of traditional heterogeneous catalysts with desired features of homogeneous catalysts: high fraction of active sites and uniform metal centers. We previously reported the synthesis of Pt-ligand SSCs through a novel metal-ligand self-assembly method on MgO, CeO2_2, and Al2_2O3_3 supports (J. Catal. 2018, 365, 303-312). Here, we present their applications in the industrially-relevant alkene hydrosilylation reaction, with 95% yield achieved under mild conditions. As expected, they exhibit better metal utilization efficiency than traditional heterogeneous Pt catalysts. The comparison with commercial catalysts (Karstedt and Speier) reveals several advantages of these SSCs: higher selectivity, less colloidal Pt formation, less alkene isomerization/hydrogenation, and better tolerance towards functional groups in substrates. Despite some leaching, our catalysts exhibit satisfactory recyclability and the singlesite structure remains intact on oxide supports after reaction. Pt single-sites were proved to be the main active sites rather than colloidal Pt formed during the reaction. An induction period is observed in which Pt sites are activated by Cl detachment and replacement by reactant alkenes. The most active species likely involves temporary detachment of Pt from ligand or support. Catalytic performance of Pt SSCs is sensitive to the ligand and support choices, enabling fine tuning of Pt sites. This work highlights the application of heterogeneous SSCs created by the novel metal-ligand self-assembly strategy in an industrially-relevant reaction. It also offers a potential catalyst for future industrial hydrosilylation applications with several improvements over current commercial catalysts
    corecore