16 research outputs found
Entanglement properties of quantum spin chains
We investigate the entanglement properties of a finite size 1+1 dimensional
Ising spin chain, and show how these properties scale and can be utilized to
reconstruct the ground state wave function. Even at the critical point, few
terms in a Schmidt decomposition contribute to the exact ground state, and to
physical properties such as the entropy. Nevertheless the entanglement here is
prominent due to the lower-lying states in the Schmidt decomposition.Comment: 5 pages, 6 figure
Evolution of entanglement after a local quench
We study free electrons on an infinite half-filled chain, starting in the
ground state with a bond defect. We find a logarithmic increase of the
entanglement entropy after the defect is removed, followed by a slow relaxation
towards the value of the homogeneous chain. The coefficients depend
continuously on the defect strength.Comment: 14 pages, 9 figures, final versio
Topological order in 1D Cluster state protected by symmetry
We demonstrate how to construct the Z2*Z2 global symmetry which protects the
ground state degeneracy of cluster states for open boundary conditions. Such a
degeneracy ultimately arises because the set of stabilizers do not span a
complete set of integrals of motion of the cluster state Hamiltonian for open
boundary conditions. By applying control phase transformations, our
construction makes the stabilizers into the Pauli operators spanning the qubit
Hilbert space from which the degeneracy comes.Comment: 1 figure, To be published in Quantum Information Processin
Measurement-based quantum computation in a 2D phase of matter
Recently it has been shown that the non-local correlations needed for
measurement based quantum computation (MBQC) can be revealed in the ground
state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model involving nearest
neighbor spin-3/2 interactions on a honeycomb lattice. This state is not
singular but resides in the disordered phase of ground states of a large family
of Hamiltonians characterized by short-range-correlated valence bond solid
states. By applying local filtering and adaptive single particle measurements
we show that most states in the disordered phase can be reduced to a graph of
correlated qubits that is a scalable resource for MBQC. At the transition
between the disordered and Neel ordered phases we find a transition from
universal to non-universal states as witnessed by the scaling of percolation in
the reduced graph state.Comment: 8 pages, 6 figures, comments welcome. v2: published versio
Recommended from our members
Consistency and Standardization of Color in Medical Imaging: a Consensus Report
This article summarizes the consensus reached at the Summit on Color in Medical Imaging held at the Food and Drug Administration (FDA) on May 8–9, 2013, co-sponsored by the FDA and ICC (International Color Consortium). The purpose of the meeting was to gather information on how color is currently handled by medical imaging systems to identify areas where there is a need for improvement, to define objective requirements, and to facilitate consensus development of best practices. Participants were asked to identify areas of concern and unmet needs. This summary documents the topics that were discussed at the meeting and recommendations that were made by the participants. Key areas identified where improvements in color would provide immediate tangible benefits were those of digital microscopy, telemedicine, medical photography (particularly ophthalmic and dental photography), and display calibration. Work in these and other related areas has been started within several professional groups, including the creation of the ICC Medical Imaging Working Group