17 research outputs found

    Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    Get PDF
    Abstract Background Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Methods Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Results Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels were found. Conclusion Despite the sustained pulmonary inflammatory response, an eight week exposure to graphene oxide, Flammruss 101, Printex 90 and the diesel particle SRM1650b in the present study did not appear to affect semen parameters, daily sperm production or testosterone concentration in male NMRI mice

    Environmentally benign nanomaterial synthesis mediated by culture broths

    No full text
    © 2017 Pan Stanford Publishing Pte. Ltd. Owing to their unique optical, electrical, chemical and physical properties, nanoscale materials have shown remarkable potential for widespread applications in electronics, catalysis, sensing and nanomedicine, among other fields (Kamyshny and Magdassi, 2014; Corain et al., 2008; Kumar et al., 2015; Etheridge et al., 2013). A multitude of protocols have been well established to synthesize nanoparticles (NPs), including chemical reduction (Flores et al., 2013), physical vapor deposition (Wang et al., 2007) and irradiation routes (Shin et al., 2004; Dhand et al., 2015). Unfortunately, conventional physicochemical methods result, in most cases, in high environmental and economic costs (Dahl et al., 2007). Hence, there is a significant benefit in developing 90nontoxic and environmentally benign biological processes for NP synthesis (Faramarzi and Sadighi, 2013)

    Effects of maternal inhalation of carbon black nanoparticles on reproductive and fertility parameters in a four-generation study of male mice

    Get PDF
    Abstract Background Previous findings indicate that in utero exposure to nanoparticles may affect the reproductive system in male offspring. Effects such as decreased sperm counts and testicular structural changes in F1 males have been reported following maternal airway exposure to carbon black during gestation. In addition, a previous study in our laboratory suggested that the effects of in utero exposure of nanoparticles may span further than the first generation, as sperm content per gram of testis was significantly lowered in F2 males. In the present study we assessed male fertility parameters following in utero inhalation exposure to carbon black in four generations of mice. Results Filter measurements demonstrated that the time-mated females were exposed to a mean total suspended particle mass concentration of 4.79 ± 1.86 or 33.87 ± 14.77 mg/m3 for the low and high exposure, respectively. The control exposure was below the detection limit (LOD 0.08 mg/m3). Exposure did not affect gestation and litter parameters in any generation. No significant changes were observed in body and reproductive organ weights, epididymal sperm parameters, daily sperm production, plasma testosterone or fertility. Conclusion In utero exposure to carbon black nanoparticles, at occupationally relevant exposure levels, via maternal whole body inhalation did not affect male-specific reproductive, fertility and litter parameters in four generations of mice
    corecore