41 research outputs found

    Combined theoretical and experimental study of the Moir\'e dislocation network at the SrTiO3_3-(La,Sr)(Al,Ta)O3_3 interface

    Full text link
    Recently a highly ordered Moir\'e dislocation lattice was identified at the interface between a \ce{SrTiO3} (STO) thin film and the (LaAlO3_3)0.3_{0.3}(Sr2_2TaAlO6_6)0.7_{0.7} (LSAT) substrate. A fundamental understanding of the local ionic and electronic structure around the dislocation cores is crucial to further engineer the properties of these complex multifunctional heterostructures. Here we combine experimental characterization via analytical scanning transmission electron microscopy with results of molecular dynamics and density functional theory calculations to gain insights into the structure and defect chemistry of these dislocation arrays. Our results show that these dislocations lead to undercoordinated Ta/Al cations at the dislocation core, where oxygen vacancies can easily be formed, further facilitated by the presence of cation vacancies. The reduced Ti3+^{3+} observed experimentally at the dislocations by electron energy-loss spectroscopy are a consequence of both the structure of the dislocation itself, as well as of the electron-doping due to oxygen vacancy formation. Finally, the experimentally observed Ti diffusion into LSAT around the dislocation core occurs only together with cation-vacancy formation in LSAT or Ta diffusion into STO

    Combined Theoretical and Experimental Study of the Moiré Dislocation Network at the SrTiO3-(La,Sr)(Al,Ta)O3 Interface.

    Get PDF
    Recently, a highly ordered Moiré dislocation lattice was identified at the interface between a SrTiO3 (STO) thin film and the (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) substrate. A fundamental understanding of the local ionic and electronic structures around the dislocation cores is crucial to further engineer the properties of these complex multifunctional heterostructures. Here, we combine experimental characterization via analytical scanning transmission electron microscopy with results of molecular dynamics and density functional theory calculations to gain insights into the structure and defect chemistry of these dislocation arrays. Our results show that these dislocations lead to undercoordinated Ta/Al cations at the dislocation core, where oxygen vacancies can easily be formed, further facilitated by the presence of cation vacancies. The reduced Ti3+ observed experimentally at the dislocations by electron energy-loss spectroscopy is a consequence of both the structure of the dislocation itself and of the electron doping due to oxygen vacancy formation. Finally, the experimentally observed Ti diffusion into the LSAT around the dislocation core occurs only together with cation vacancy formation in the LSAT or Ta diffusion into STO

    Unusual ferrimagnetism in CaFe2O4

    Get PDF
    Incomplete cancellation of collinear antiparallel spins gives rise to ferrimagnetism. Even if the oppositely polarized spins are owing to the equal number of a single magnetic element having the same valence state, in principle, a ferrimagnetic state can still arise from the crystallographic inequivalence of the host ions. However, experimental identification of such a state as ferrimagnetic is not straightforward because of the tiny magnitude expected for M and the requirement for a sophisticated technique to differentiate similar magnetic sites. We report a synchrotron-based resonant x-ray investigation at the Fe L2,3 edges on an epitaxial film of CaFe2O4, which exhibits two magnetic phases with similar energies. We find that while one phase of CaFe2O4 is antiferromagnetic, the other one is ferrimagnetic with an antiparallel arrangement of an equal number of spins between two distinct crystallographic sites with very similar local coordination environments. Our results further indicate two distinct origins of an overall minute M; one is intrinsic, from distinct Fe3+ sites, and the other one is extrinsic, arising from defective Fe2+ likely forming weakly-coupled ferrimagnetic clusters. These two origins are uncorrelated and have very different coercive fields. Hence, this work provides a direct experimental demonstration of ferrimagnetism solely due to crystallographic inequivalence of the Fe3+ as the origin of the weak M of CaFe2O4.Comment: 14 pages, 8 figure

    Hole doping in compositionally complex correlated oxide enables tunable exchange biasing

    Full text link
    Magnetic interfaces and the phenomena arising from them drive both the design of modern spintronics and fundamental research. Recently, it was revealed that through designing magnetic frustration in configurationally complex entropy stabilized oxides, exchange bias can occur in structurally single crystal films. This eliminates the need for complex heterostructures and nanocomposites in the design and control of magnetic response phenomena. In this work, we demonstrate through hole doping of a high entropy perovskite oxide that tuning of magnetic responses can be achieved. With detailed magnetometry, we show magnetic coupling exhibiting a variety of magnetic responses including exchange bias and antiferromagnetic spin reversal in the entropy stabilized ABO3 perovskite oxide La1-xSrx(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 family. We find that manipulation of the A-site charge state can be used to balance magnetic phase compositions and coupling responses. This allows for the creation of highly tunable exchange bias responses. In the low Sr doping regime, a spin frustrated region arising at the antiferromagnetic phase boundary is shown to directly couple to the antiferromagnetic moments of the film and emerges as the dominant mechanism, leading to a vertical shift of magnetization loops in response to field biasing. At higher concentrations, direct coupling of antiferromagnetic and ferromagnetic regions is observed. This tunability of magnetic coupling is discussed within the context of these three competing magnetic phases, revealing critical features in designing exchange bias through exploiting spin frustration and disorder in high entropy oxides
    corecore