106 research outputs found

    Bounds on the heat kernel of the Schroedinger operator in a random electromagnetic field

    Full text link
    We obtain lower and upper bounds on the heat kernel and Green functions of the Schroedinger operator in a random Gaussian magnetic field and a fixed scalar potential. We apply stochastic Feynman-Kac representation, diamagnetic upper bounds and the Jensen inequality for the lower bound. We show that if the covariance of the electromagnetic (vector) potential is increasing at large distances then the lower bound is decreasing exponentially fast for large distances and a large time.Comment: some technical improvements, new references, to appear in Journ.Phys.

    Hyperentangled States

    Get PDF
    We investigate a new class of entangled states, which we call 'hyperentangled',that have EPR correlations identical to those in the vacuum state of a relativistic quantum field. We show that whenever hyperentangled states exist in any quantum theory, they are dense in its state space. We also give prescriptions for constructing hyperentangled states that involve an arbitrarily large collection of systems.Comment: 23 pages, LaTeX, Submitted to Physical Review

    Quantum field theory on manifolds with a boundary

    Full text link
    We discuss quantum theory of fields \phi defined on (d+1)-dimensional manifold {\cal M} with a boundary {\cal B}. The free action W_{0}(\phi) which is a bilinear form in \phi defines the Gaussian measure with a covariance (Green function) {\cal G}. We discuss a relation between the quantum field theory with a fixed boundary condition \Phi and the theory defined by the Green function {\cal G}. It is shown that the latter results by an average over \Phi of the first. The QFT in (anti)de Sitter space is treated as an example. It is shown that quantum fields on the boundary are more regular than the ones on (anti) de Sitter space.Comment: The version to appear in Journal of Physics A, a discussion on the relation to other works in the field is adde

    Impulse control of portfolios with jumps and transaction costs

    No full text

    Optimal consumption and investment with liquid and illiquid assets

    No full text
    I consider an optimal consumption/investment problem to maximize expected utility from consumption. In this market model, the investor is allowed to choose a portfolio that consists of one bond, one liquid risky asset (no transaction costs), and one illiquid risky asset (proportional transaction costs). I fully characterize the optimal consumption and trading strategies in terms of the solution of the free boundary ordinary differential equation (ODE) with an integral constraint. I find an explicit characterization of model parameters for the well-posedness of the problem, and show that the problem is well posed if and only if there exists a shadow price process. Finally, I describe how the investor's optimal strategy is affected by the additional opportunity of trading the liquid risky asset, compared to the simpler model with one bond and one illiquid risky asset

    Stochastic differential equations

    No full text

    On the tail behavior of sums of independent random variables

    No full text
    • 

    corecore