134 research outputs found

    Correlated electronic structure, orbital-dependent correlations, and Lifshitz transition in tetragonal FeS

    Full text link
    Using density functional plus dynamical mean-field theory method (DFT+DMFT) with full self-consistency over the charge density, we study the effect of electronic correlations on the electronic structure, magnetic properties, orbital-dependent band renormalizations, and Fermi surface of the tetragonal phase of bulk FeS. We perform a direct structural optimization of the P4/nmmP_4/nmm crystal structure of paramagnetic FeS, with respect to the lattice constant aa and the internal coordinate zSz_\mathrm{S} of atom S. Our results show an anomalous sensitivity of the electronic structure and magnetic properties of FeS to fine details of its crystals structure. Upon expansion of the lattice volume, we observe a remarkable change of the electronic structure of FeS which is associated with a complete reconstruction of the Fermi surface topology (Lifshitz transition). This behavior is ascribed to a correlation-induced shift of the Van Hove singularity associated with the Fe t2t_2 orbitals at the MM point across the Fermi level. The Lifshitz phase transition is accompanied by a significant growth of local magnetic moments and emergence of strong orbital-selective correlations. It is seen as a pronounced anomaly (`kink') in the total energies upon expansion of the lattice, associated with a remarkable enhancement of compressibility. This behavior is accompanied by an orbital-dependent formation of local moments, a crossover from itinerant to localized orbital-selective moment behavior of the Fe 3d3d electrons. While exhibiting weak effective mass enhancement of the Fe 3d3d states m/m1.31.4m^*/m \sim 1.3-1.4, correlation effects reveal a strong impact on a position of the Van Hove singularity at the MM point, implying a complex interplay between electronic correlations and band structure effects in FeS

    Correlation strength, Lifshitz transition and the emergence of a two- to three-dimensional crossover in FeSe under pressure

    Full text link
    We report a detailed theoretical study of the electronic structure, spectral properties, and lattice parameters of bulk FeSe under pressure using a fully charge self-consistent implementation of the density functional theory plus dynamical mean-field theory method (DFT+DMFT). In particular, we perform a structural optimization and compute the evolution of the lattice parameters (volume, c/ac/a ratio, and the internal zz position of Se) and the electronic structure of the tetragonal (space group P4/nmmP4/nmm) paramagnetic FeSe. Our results for the lattice parameters are in good quantitative agreement with experiment. The c/ac/a ratio is slightly overestimated by about 33~\%, presumably due to the absence of the van der Waals interactions between the FeSe layers in our calculations. The lattice parameters determined within DFT are off the experimental values by a remarkable \sim66-1515~\%, implying a crucial importance of electron correlations. Upon compression to 1010~GPa, the c/ac/a ratio and the lattice volume show a decrease by 22 and 1010~\%, respectively, while the Se zz coordinate weakly increases by \sim22~\%. Most importantly, our results reveal a topological change of the Fermi surface (Lifshitz transition) which is accompanied by a two- to three-dimensional crossover. Our results indicate a small reduction of the quasiparticle mass renormalization m/mm^*/m by about 55~\% for the ee and less than 11~\% for the t2t_2 states, as compared to ambient pressure. The behavior of the momentum-resolved magnetic susceptibility χ(q)\chi({\bf q}) shows no topological changes of magnetic correlations under pressure, but demonstrates a reduction of the degree of the in-plane (π,π)(\pi,\pi) stripe-type nesting. Our results for the electronic structure and lattice parameters of FeSe are in good qualitative agreement with recent experiments on its isoelectronic counterpart FeSe1x_{1-x}Sx_x.Comment: 10 pages, 6 figure

    Wannier functions and exchange integrals: The example of LiCu2_{2}O2_{2}

    Full text link
    Starting from a single band Hubbard model in the Wannier function basis, we revisit the problem of the ligand contribution to exchange and derive explicit formulae for the exchange integrals in metal oxide compounds in terms of atomic parameters that can be calculated with constrained LDA and LDA+U. The analysis is applied to the investigation of the isotropic exchange interactions of LiCu2_{2}O2_{2}, a compound where the Cu-O-Cu angle of the dominant exchange path is close to 90^{\circ}. Our results show that the magnetic moments are localized in Wannier orbitals which have strong contribution from oxygen atomic orbitals, leading to exchange integrals that considerably differ from the estimates based on kinetic exchange only. Using LSDA+U approach, we also perform a direct {\it ab-initio} determination of the exchange integrals LiCu2_{2}O2_{2}. The results agree well with those obtained from the Wannier function approach, a clear indication that this modelization captures the essential physics of exchange. A comparison with experimental results is also included, with the conclusion that a very precise determination of the Wannier function is crucial to reach quantitative estimates.Comment: 8 pages, 8 figure

    LDA+DMFT Spectral Functions and Effective Electron Mass Enhancement in Superconductor LaFePO

    Full text link
    In this Letter we report the first LDA+DMFT results (method combining Local Density Approximation with Dynamical Mean-Field Theory) for spectral properties of superconductor LaFePO. Calculated {\bf k}-resolved spectral functions reproduce recent angle-resolved photoemission spectroscopy (ARPES) data [D. H. Lu {\it et al}., Nature {\bf 455}, 81 (2008)]. Obtained effective electron mass enhancement values m/mm^{*}/m\approx 1.9 -- 2.2 are in good agreement with infrared and optical studies [M. M. Qazilbash {\it et al}., Nature Phys. {\bf 5}, 647 (2009)], de Haas--van Alphen, electrical resistivity, and electronic specific heat measurements results, that unambiguously evidence for moderate correlations strength in LaFePO. Similar values of m/mm^{*}/m were found in the other Fe-based superconductors with substantially different superconducting transition temperatures. Thus, the dynamical correlation effects are essential in the Fe-based superconductors, but the strength of electronic correlations does not determine the value of superconducting transition temperature.Comment: 4 pages, 3 figure

    Orbital Selective Pressure-Driven Metal-Insulator Transition in FeO from Dynamical Mean-Field Theory

    Get PDF
    In this Letter we report the first LDA+DMFT (method combining Local Density Approximation with Dynamical Mean-Field Theory) results of magnetic and spectral properties calculation for paramagnetic phases of FeO at ambient and high pressures (HP). At ambient pressure (AP) calculation gave FeO as a Mott insulator with Fe 3dd-shell in high-spin state. Calculated spectral functions are in a good agreement with experimental PES and IPES data. Experimentally observed metal-insulator transition at high pressure is successfully reproduced in calculations. In contrast to MnO and Fe2_2O3_3 (d5d^5 configuration) where metal-insulator transition is accompanied by high-spin to low-spin transition, in FeO (d6d^6 configuration) average value of magnetic moment \sqrt{} is nearly the same in the insulating phase at AP and metallic phase at HP in agreement with X-Ray spectroscopy data (Phys. Rev. Lett. {\bf83}, 4101 (1999)). The metal-insulator transition is orbital selective with only t2gt_{2g} orbitals demonstrating spectral function typical for strongly correlated metal (well pronounced Hubbard bands and narrow quasiparticle peak) while ege_g states remain insulating.Comment: 4 pages, 4 figure

    NiO: Correlated Bandstructure of a Charge-Transfer Insulator

    Full text link
    The bandstructure of the prototypical charge-transfer insulator NiO is computed by using a combination of an {\it ab initio} bandstructure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni-d and O-p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This solves a long-standing problem in solid state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.Comment: 4 pages, 3 figur

    Correlated band structure of superconducting NdFeAsO0.9F0.1: Dynamical mean-field study

    Full text link
    We report the LDA + DMFT (method combining local density approximation with dynamical mean-field theory) results for spectral properties of the superconductor NdFeAsO0.9F0.1 in the paramagnetic phase. The calculated momentum-resolved spectral functions are in good agreement with angle-resolved photoemission spectra (ARPES). The obtained effective quasiparticle mass enhancement (m*/m = 1.4) is smaller than the one in isostructural parent compound LaFeAsO which critical temperature under the same fluorine doping (LaFeAsO0.9F0.1) is two times lower. Our results demonstrate that in quaternary FeAs-based superconductors of the same class, changes of the crystal structure caused by substitution of one rare-earth atom, implicitly result in reduction of the electronic correlation strength. © 2013 Pleiades Publishing, Inc

    Structural, elastic and electronic properties of new layered superconductor HfCuGe2 in comparison with isostructural HfCuSi2, ZrCuGe2, and ZrCuSi2 from first-principles calculations

    Full text link
    Very recently, low-temperature superconductivity was discovered for the intermetallic compound HfCuGe2 (2013; Cava RJ, et al, EPL 101:67001.), which was declared as "a non-magnetic analog of the 1111 iron pnictides". Herein, by means of the first-principles calculations, we have examined in detail the structural, elastic, and electronic properties of HfCuGe2, as well as of the isostructural and isoelectronic phases ZrCuGe2, HfCuSi2, and ZrCuSi2, which are analyzed in comparison with a set of 1111-like phases. The obtained close similarity of the electronic factors, namely, the topologies of the near-Fermi bands, the Fermi surfaces, as well as the DOS values at the Fermi level for superconducting HfCuGe2 and other examined 112 phases allowed us to assume that low-temperature superconductivity may be expected also for ZrCuGe2, HfCuSi2, and ZrCuSi2. © 2013 Elsevier Ltd. All rights reserved
    corecore