27 research outputs found

    Polariton-mediated Raman scattering in microcavities: A Green's function approach

    Full text link
    We present calculations of the intensity of polariton-mediated inelastic light scattering in semiconductor microcavities within a Green's function framework. In addition to reproducing the strong coupling of light and matter, this method also enables the inclusion of damping mechanisms in a consistent way. Our results show excellent agreement with recent Raman scattering experiments.Comment: 6 pages, 1 figur

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6A˚6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure

    Keldysh Green's function approach to coherence in a non-equilibrium steady state: connecting Bose-Einstein condensation and lasing

    Full text link
    Solid state quantum condensates often differ from previous examples of condensates (such as Helium, ultra-cold atomic gases, and superconductors) in that the quasiparticles condensing have relatively short lifetimes, and so as for lasers, external pumping is required to maintain a steady state. On the other hand, compared to lasers, the quasiparticles are generally more strongly interacting, and therefore better able to thermalise. This leads to questions of how to describe such non-equilibrium condensates, and their relation to equilibrium condensates and lasers. This chapter discusses in detail how the non-equilibrium Green's function approach can be applied to the description of such a non-equilibrium condensate, in particular, a system of microcavity polaritons, driven out of equilibrium by coupling to multiple baths. By considering the steady states, and fluctuations about them, it is possible to provide a description that relates both to equilibrium condensation and to lasing, while at the same time, making clear the differences from simple lasers

    Polarization-resolved strong light–matter coupling in planar GaAs/AlGaAs waveguides

    Get PDF
    We study the influence of optical selection rules and polarization splittings on properties of exciton polaritons in a planar AlGaAs waveguide containing embedded GaAs quantum wells. We demonstrate that transverse electric and transverse magnetic modes couple differently with light- and heavy-hole quantum well excitons, which leads to distinct polarization splittings of the resulting polariton modes. The experimental data are in good agreement with modeling based on theoretical data for the optical selection rules for quantum well excitons

    Photonic molecules and spectral engineering

    Full text link
    This chapter reviews the fundamental optical properties and applications of pho-tonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and en-hanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically-induced transparency, and enhancing sensitivity of microcavity-based bio-, stress- and rotation-sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally-tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.Comment: A review book chapter: 29 pages, 19 figure

    The socio-legal dynamics and implications of 'diversion': the case study of the Toronto 'John School' diversion program for prostitution offenders

    Full text link
    This article explores the socio-legal dynamics and implications of the `John School' diversion programme for prostitution offenders in Toronto, Canada. The analysis is based on quantitative and qualitative data collected as part of an evaluation study of the programme conducted between 1999 and 2001. The analysis begins by exploring the socio-political forces that have shaped prostitution control in Canada over the last century and ultimately led to the emergence of the `John School' as a reform compromise. The article subsequently investigates the particular role of `victims' discourses within the rationale and practices of the `John School' initiative. It traces the ambiguous nature of the programme's objectives by contrasting its widely promoted `educational' and `constructive' aims with the more punitive qualities that emerge in practice. Drawing from the critical literature on informal justice and diversion, it is evidenced that the programme focuses disproportionately on participants from lower socio-economic classes. Serious questions are also raised with regards to `due process'. Particular attention is given to the requirement by participants to waive basic procedural rights in return for admission in the `John School' programme and the subsequent withdrawal of criminal charges. The degree of `choice' involved in accepting these conditions is evaluated with regard to the specific characteristics of the target population. Policy implications are discussed
    corecore