9 research outputs found
Cytotoxic Mediators in Paradoxical HIV-Tuberculosis Immune Reconstitution Inflammatory Syndrome
Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) frequently complicates combined antiretroviral therapy and antituberculosis therapy in HIV-1–coinfected tuberculosis patients. The immunopathological mechanisms underlying TB-IRIS are incompletely defined, and improved understanding is required to derive new treatments and to reduce associated morbidity and mortality. We performed longitudinal and cross-sectional analyses of human PBMCs from paradoxical TB-IRIS patients and non-IRIS controls (HIV-TB–coinfected patients commencing antiretroviral therapy who did not develop TB-IRIS). Freshly isolated PBMC stimulated with heat-killed Mycobacterium tuberculosis H37Rv (hkH37Rv) were used for IFN-γ ELISPOT and RNA extraction. Stored RNA was used for microarray and RT-PCR, whereas corresponding stored culture supernatants were used for ELISA. Stored PBMC were used for perforin and granzyme B ELISPOT and flow cytometry. There were significantly increased IFN-γ responses to hkH37Rv in TB-IRIS, compared with non-IRIS PBMC (p = 0.035). Microarray analysis of hkH37Rv-stimulated PBMC indicated that perforin 1 was the most significantly upregulated gene, with granzyme B among the top five (log(2) fold difference 3.587 and 2.828, respectively), in TB-IRIS. Downstream experiments using RT-PCR, ELISA, and ELISPOT confirmed the increased expression and secretion of perforin and granzyme B. Moreover, granzyme B secretion reduced in PBMC from TB-IRIS patients during corticosteroid treatment. Invariant NKT cell (CD3(+)Vα24(+)) proportions were higher in TB-IRIS patients (p = 0.004) and were a source of perforin. Our data implicate the granule exocytosis pathway in TB-IRIS pathophysiology. Further understanding of the immunopathogenesis of this condition will facilitate development of specific diagnostic and improved therapeutic options
Hypercytokinaemia accompanies HIV-tuberculosis immune reconstitution inflammatory syndrome.
Increased access to combination antiretroviral therapy in areas co-endemic for tuberculosis (TB) and HIV-1 infection is associated with an increased incidence of immune reconstitution inflammatory syndrome (TB-IRIS) whose cause is poorly understood. A case-control analysis of pro- and anti-inflammatory cytokines in TB-IRIS patients sampled at clinical presentation, and similar control patients with HIV-TB prescribed combined antiretroviral therapy who did not develop TB-IRIS. Peripheral blood mononuclear cells were cultured in the presence or absence of heat-killed Mycobacterium tuberculosis for 6 and 24 h. Stimulation with M. tuberculosis increased the abundance of many cytokine transcripts with interleukin (IL)-1β, IL-5, IL-6, IL-10, IL-13, IL-17A, interferon (IFN)-γ, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumour necrosis factor (TNF) being greater in stimulated TB-IRIS cultures. Analysis of the corresponding proteins in culture supernatants, revealed increased IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12p40, IFN-γ, GM-CSF and TNF in TB-IRIS cultures. In serum, higher concentrations of TNF, IL-6, and IFN-γ were observed in TB-IRIS patients. Serum IL-6 and TNF decreased during prednisone therapy in TB-IRIS patients. These data suggest that cytokine release contributes to pathology in TB-IRIS. IL-6 and TNF were consistently elevated and decreased in serum during corticosteroid therapy. Specific blockade of these cytokines may be rational approach to immunomodulation in TB-IRIS
Recommended from our members
Advancing the chemotherapy of tuberculous meningitis: a consensus view.
Tuberculous meningitis causes death or disability in approximately 50% of affected individuals and kills approximately 78 200 adults every year. Antimicrobial treatment is based on regimens used for pulmonary tuberculosis, which overlooks important differences between lung and brain drug distributions. Tuberculous meningitis has a profound inflammatory component, yet only adjunctive corticosteroids have shown clear benefit. There is an active pipeline of new antitubercular drugs, and the advent of biological agents targeted at specific inflammatory pathways promises a new era of improved tuberculous meningitis treatment and outcomes. Yet, to date, tuberculous meningitis trials have been small, underpowered, heterogeneous, poorly generalisable, and have had little effect on policy and practice. Progress is slow, and a new approach is required. In this Personal View, a global consortium of tuberculous meningitis researchers articulate a coordinated, definitive way ahead via globally conducted clinical trials of novel drugs and regimens to advance treatment and improve outcomes for this life-threatening infection