33 research outputs found

    Sexual Conflict and Sexually Antagonistic Coevolution in an Annual Plant

    Get PDF
    BACKGROUND: Sexual conflict theory predicts sexually antagonistic coevolution of reproductive traits driven by conflicting evolutionary interests of two reproducing individuals. Most studies of the evolutionary consequences of sexual conflicts have, however, to date collectively investigated only a few species. In this study we used the annual herb Collinsia heterophylla to experimentally test the existence and evolutionary consequences of a potential sexual conflict over onset of stigma receptivity. METHODOLOGY/PRINCIPAL FINDINGS: We conducted crosses within and between four greenhouse-grown populations originating from two regions. Our experimental setup allowed us to investigate male-female interactions at three levels of geographic distances between interacting individuals. Both recipient and pollen donor identity affected onset of stigma receptivity within populations, confirming previous results that some pollen donors can induce stigma receptivity. We also found that donors were generally better at inducing stigma receptivity following pollen deposition on stigmas of recipients from another population than their own, especially within a region. On the other hand, we found that donors did worse at inducing stigma receptivity in crosses between regions. Interestingly, recipient costs in terms of lowered seed number after early fertilisation followed the same pattern: the cost was apparent only if the pollen donor belonged to the same region as the recipient. CONCLUSION/SIGNIFICANCE: Our results indicate that recipients are released from the cost of interacting with local pollen donors when crossed with donors from a more distant location, a pattern consistent with a history of sexually antagonistic coevolution within populations. Accordingly, sexual conflicts may have important evolutionary consequences also in plants

    Parental genetic distance and patterns in nonrandom mating and seed yield in predominately selfing Arabidopsis thaliana

    Get PDF
    Citation: Carlson, A., Gong, H., Toomajin, C., Swanson, R. (2013). Parental genetic distance and patterns in nonrandom mating and seed yield in predominately selfing Arabidopsis thaliana. Plant Reproduction, 26(4), 317-328. https://doi.org/10.1007/s00497-013-0228-5In this study, we ask two questions: (1) Is reproductive success independent of parental genetic distance in predominately selfing plants? (2) In the absence of early inbreeding depression, is there substantial maternal and/or paternal variation in reproductive success in natural populations? Seed yield in single pollinations and proportion of seeds sired in mixed pollinations were studied in genetically defined accessions of the predominately selfing plant Arabidopsis thaliana by conducting two diallel crosses. The first diallel was a standard, single pollination design that we used to examine variance in seed yield. The second diallel was a mixed pollination design that utilized a standard pollen competitor to examine variance in proportion of seeds sired. We found no correlation between reproductive success and parental genetic distance, and self-pollen does not systematically differ in reproductive success compared to outcross pollen, suggesting that Arabidopsis populations do not experience embryo lethality due to early-acting inbreeding or outbreeding depression. We used these data to partition the contributions to total phenotypic variation from six sources, including maternal contributions, paternal contributions and parental interactions. For seed yield in single pollinations, maternal effects accounted for the most significant source of variance (16.6 %). For proportion of seeds sired in mixed pollinations, the most significant source of variance was paternal effects (17.9 %). Thus, we show that population-level genetic similarities, including selfing, do not correlate with reproductive success, yet there is still significant paternal variance under competition. This suggests two things. First, since these differences are unlikely due to early-acting inbreeding depression or differential pollen viability, this implicates natural variation in pollen germination and tube growth dynamics. Second, this strongly supports a model of fixation of pollen performance genes in populations, offering a focus for future genetic studies in differential reproductive success

    An analysis of mating biases in trees

    Full text link
    Assortative mating is a deviation from random mating based on phenotypic similarity. As it is much better studied in animals than in plants, we investigate for trees whether kinship of realized mating pairs deviates from what is expected from the set of potential mates and use this information to infer mating biases that may result from kin recognition and/or assortative mating. Our analysis covers twenty species of trees for which microsatellite data is available for adult populations (potential mates) as well as seed arrays. We test whether mean relatedness of observed mating pairs deviates from null expectations that only take pollen dispersal distances into account (estimated from the same dataset). This allows to identify elevated as well as reduced kinship among realized mating pairs, indicative of positive and negative assortative mating, respectively. The test is also able to distinguish elevated biparental inbreeding that occurs solely as a result of related pairs growing closer to each other from further assortativeness. Assortative mating in trees appears potentially common but not ubiquitous: nine data sets show mating bias with elevated inbreeding, nine do not deviate significantly from the null expectation, and two show mating bias with reduced inbreeding. While our datasets lack direct information on phenology, our investigation of the phenological literature for each species identifies flowering phenology as a potential driver of positive assortative mating (leading to elevated inbreeding) in trees. Since active kin recognition provides an alternative hypothesis for these patterns, we encourage further investigations on the processes and traits that influence mating patterns in trees

    Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following two-donor crosses

    Get PDF
    Mate choice in plants is poorly understood, in particular its indirect genetic benefits, but also the direct benefits of avoiding harmful matings. In the herbCollinsia heterophylla, delayed stigma receptivity has been suggested to enhance pollen competition, potentially functioning as a female mate choice trait. Previous studies show that this trait can mitigate the cost of early fertilization caused by pollen, thus providing a direct benefit. We performed two-donor pollinations during successive floral stages to assess how this stigma receptivity trait and two pollen traits known to affect siring success influence indirect benefits in terms of offspring performance. We also investigated differential resource allocation by studying the influence of sibling performance in the same capsule. Offspring performance in terms of flower number was mainly affected by parental identities and differential resource allocation. Offspring seed production showed some influence of resource allocation, but was also affected by pollen donor identity and varied positively with late stigma receptivity. However, the effect of late stigma receptivity on offspring seed production was weakened in matings with pollen that advanced stigma receptivity. In conclusion, delayed stigma receptivity may be selected through both direct and indirect fitness effects inC. heterophylla, where pollen-based delay on stigma receptivity might act as a cue for mate choice. However, selection may also be counteracted by antagonistic selection on pollen to advance stigma receptivity. Our results highlight the challenges of studying indirect genetic benefits and other factors that influence mate choice in plants

    Within/between population crosses reveal genetic basis for siring success in Silene latifolia (Caryophyllaceae).

    Full text link
    Divergence at reproductive traits can generate barriers among populations, and may result from several mechanisms, including drift, local selection and co-adaptation between the sexes. Intersexual co-adaptation can arise through sexually antagonistic co-evolution, a timely hypothesis addressed in animals but, to our knowledge, not yet in flowering plants. We investigated whether male and female population of origin affected pollen competition success, offspring fitness and sex ratio in crosses within/between six genetically differentiated populations of the white campion, Silene latifolia. Each female was crossed with pollen from one focus male from the same population, and pollen from two focus males from two distinct populations, both as single-donor and two-donor crosses against a fixed tester male with a 2-h interpollination interval (n = 288 crosses). We analysed paternity with microsatellite DNA. Male populations of origin significantly differed for siring success and in vitro pollen germination rates. In vitro pollen germination rate was heritable. Siring success also depended on sex ratio in the female family of origin, but only in between-population crosses. In some female populations, two-donor crosses produced less female-biased sex ratios compared with single-donor crosses, yet in other female populations the reverse was true. Offspring sex ratio varied with donor number, depending on the female population. Within/between population crosses did not differ significantly in seed set or offspring fitness, nor were siring success and offspring fitness significantly correlated. Altogether this suggests reproductive divergence for traits affecting pollen competition in S. latifolia
    corecore