23 research outputs found

    Enzymatic transesterification of urethane-bond containing ester

    Get PDF
    Here we demonstrate the feasibility and successful application of enzymes in polyurethane network synthesis as well as occurring hurdles that have to be addressed when using urethanes synthesis substrates. The enzymatic transesterification of an urethane-bond containing monofunctional ester and a model alcohol carbitol using lipases is discussed. The reaction is optimized in terms of transesterification time and temperature, the reaction solvent, the possibility of a cosolvent and the alcohol amount, the used transesterification environment, and the biocatalyst. Enzymatic cross-linking of polyurethanes can open up a pool of new possibilities for cross-linking and related polyurethane network properties due to the enzymes high enantio-, stereo-, and regioselectivity and broad substrate spectrum. [Figure not available: see fulltext.

    Lipase-Catalyzed Transamidation of Urethane-Bond-Containing Ester

    Get PDF
    Significant improvement in mechanical properties and shape recovery in polyurethanes can be obtained by cross-linking, usually performed in a traditional chemical fashion. Here, we report model studies of enzymatic transamidations of urethane-bond-containing esters to study the principles of an enzymatic build-up of covalent cross-linked polyurethane networks via amide bond formation. The Lipase-catalyzed transamidation reaction of a urethane-bond-containing model ester ethyl 2-(hexylcarbamoyloxy)propanoate with various amines is discussed. A side product was formed, that could be successfully identified, and its synthesis reduced to a minimum

    Activity-independent screening of secreted proteins using split GFP

    Get PDF
    The large-scale industrial production of proteins requires efficient secretion, as provided, for instance, by the Sec system of Gram-positive bacteria. Protein engineering approaches to optimize secretion often involve the screening of large libraries, e.g. comprising a target protein fused to many different signal peptides. Respective high-throughput screening methods are usually based on photometric or fluorimetric assays enabling fast and simple determination of enzymatic activities. Here, we report on an alternative method for quantification of secreted proteins based on the split GFP assay. We analyzed the secretion by Bacillus subtilis of a homologous lipase and a heterologous cutinase by determination of GFP fluorescence and enzyme activity assays. Furthermore, we identified from a signal peptide library a variant of the biotechnologically relevant B. subtilis protein swollenin EXLX1 with up to 5-fold increased secretion. Our results demonstrate that the split GFP assay can be used to monitor secretion of enzymatic and non-enzymatic proteins in B. subtilis in a high-throughput manner

    Biocatalytic Synthesis of Furan-Based Oligomer Diols with Enhanced End-Group Fidelity

    Get PDF
    The lipase-catalyzed synthesis of furan-comprising polyester oligomer diols (α,ω-telechelic diols) is reported. Oligofuranoate diols with excellent end-group fidelity and a yield of 95% were synthesized using a solvent-free two-stage polycondensation of dimethyl furan-2,5-dicarboxylate (DMFDCA) and 1,4-cyclohexanedimethanol (1,4-CHDM) using immobilized Candida antarctica Lipase B (CalB). Recycling of immobilized CalB to further decrease the production cost is successfully demonstrated. However, it showed limitation in the product yield that decreases ±20% with each additional reuse. The synthetic procedure has been scaled up, easily opening the possibility to use the developed diols in industrial polycondensations utilizing the excellent flame retardancy property and high thermal stability typical for furan-based polymers
    corecore