36 research outputs found

    Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS

    Get PDF
    A local-scale Gaussian dispersion-deposition model (OML-DEP) has been coupled to a regional chemistry-transport model (DEHM with a resolution of approximately 6 km × 6 km over Denmark) in the Danish Ammonia Modelling System, DAMOS. Thereby, it has been possible to model the distribution of ammonia concentrations and depositions on a spatial resolution down to 400 m × 400 m for selected areas in Denmark. DAMOS has been validated against measured concentrations from the dense measuring network covering Denmark. Here measured data from 21 sites are included and the validation period covers 2–5 years within the period 2005–2009. A standard time series analysis (using statistic parameters like correlation and bias) shows that the coupled model system captures the measured time series better than the regional- scale model alone. However, our study also shows that about 50% of the modelled concentration level at a given location originates from non-local emission sources. The local-scale model covers a domain of 16 km × 16 km, and of the locally released ammonia (NH<sub>3</sub>) within this domain, our simulations at five sites show that 14–27% of the locally (within 16 km × 16 km) emitted NH<sub>3</sub> also deposits locally. These results underline the importance of including both high-resolution local-scale modelling of NH<sub>3</sub> as well as the regional-scale component described by the regional model. The DAMOS system can be used as a tool in environmental management in relation to assessments of total nitrogen load of sensitive nature areas in intense agricultural regions. However, high spatio-temporal resolution in input parameters like NH<sub>3</sub> emissions and land-use data is required

    Recommended Terminology for Aerobiological Studies

    Get PDF
    Aerobiology is an interdisciplinary science where researchers with different backgrounds are involved in different topics related to microorganism, airborne biological particles, e.g. pollen and spores, and phenology. Some concepts, words or expressions used in aerobiology have a clear definition, but are however frequently misused. Therefore, the working group “Quality Control” of the European Aerobiology Society (EAS) and the International Association of Aerobiology (IAA) would like to clarify some of them, their use and presentation

    Outdoor airborne allergens: Characterization, behavior and monitoring in Europe

    Get PDF
    Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are describe

    Automatic detection of airborne pollen: an overview

    Get PDF
    Pollen monitoring has traditionally been carried out using manual methods frst developed in the early 1950s. Although this technique has been recently standardised, it sufers from several drawbacks, notably data usually only being available with a delay of 3–9 days and usually delivered at a daily resolution. Several automatic instruments have come on to the market over the past few years, with more new devices also under development. This paper provides a comprehensive overview of all available and developing automatic instruments, how they measure, how they identify airborne pollen, what impacts measurement quality, as well as what potential there is for further advancement in the feld of bioaerosol monitoring.</p

    Enhancement of the activity of phenoxodiol by cisplatin in prostate cancer cells

    Get PDF
    Phenoxodiol is a novel isoflav-3-ene, currently undergoing clinical trials, that has a broad in vitro activity against a number of human cancer cell lines. Phenoxodiol alone inhibited DU145 and PC3 in a dose- and time-dependent manner with IC50 values of 8±1 and 38±9 μM, respectively. The combination of phenoxodiol and cisplatin was synergistic in DU145, and additive in PC3, as assessed by the Chou–Talalay method. Carboplatin was also synergistic in combination with phenoxodiol in DU145 cells. The activity of the phenoxodiol and cisplatin combination was confirmed in vivo using a DU145 xenograft model in nude mice. Pharmacokinetic data from these mice suggest that the mechanism of synergy may occur through a pharmacodynamic mechanism. An intracellular cisplatin accumulation assay showed a 35% (P<0.05) increase in the uptake of cisplatin when it was combined in a ratio of 1 μM: 5 μM phenoxodiol, resulting in a 300% (P<0.05) increase in DNA adducts. Taken together, our results suggest that phenoxodiol has interesting properties that make combination therapy with cisplatin or carboplatin appealing

    Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene

    Get PDF
    Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential

    Atmospheric transport reveals grass pollen dispersion distances

    No full text
    Identifying the origin of bioaerosols is of central importance in many biological disciplines, such as human health, agriculture, forestry, aerobiology and conservation. Modelling sources, transportation pathways and sinks can reveal how bioaerosols vary in the atmosphere and their environmental impact. Grass pollen are particularly important due to their widely distributed source areas, relatively high abundance in the atmosphere and high allergenicity. Currently, studies are uncertain regarding sampler representability between distance and sources for grass pollen. Using generalized linear modelling, this study aimed to analyse this relationship further by answering the question of distance-to-source area contribution. Grass pollen concentrations were compared between urban and rural locations, located 6.4 km apart, during two years in Worcestershire, UK. We isolated and refined vegetation areas at 100 m × 100 m using the 2017 CEH Crop Map and conducted atmospheric modelling using HYSPLIT to identify which source areas could contribute pollen. Pollen concentrations were then modelled with source areas and meteorology using generalized linear mixed-models with three temporal variables as random variation. We found that the Seasonal Pollen Integral for grass pollen varied between both years and location, with the urban location having higher levels. Day of year showed higher temporal variation than the diurnal or annual variables. For the urban location, grass source areas within 30 km had positive significant effects in predicting grass pollen concentrations, while source areas within 2–10 km were important for the rural one. The source area differential was likely influenced by an urban-rural gradient that caused differences in the source area contribution. Temperature had positive highly significant effects on both locations while precipitation affected only the rural location. Combining atmospheric modelling, vegetation source maps and generalized linear modelling was found to be a highly accurate tool to identify transportation pathways of bioaerosols in landscape environments

    TARGETED GENE-EXPRESSION ANALYSIS DURING MALIGNANT TRANSFORMATION IN PRIMARY AND SECONDARY MALIGNANT MENINGIOMA

    No full text
    BACKGROUND: Malignant meningiomas comprise 2–5% of all meningiomas. The process of malignant transformation when benign meningiomas (WHO grade I-II) become malignant (WHO grade III) has not previously been investigated in sequential tumour surgeries. Upregulation of FOXM1 expression and DREAM-complex repression have shown phenotypical subgroups correlating with WHO grade and aggressiveness. We investigated the RNA expression of 30 genes central to meningioma biology and 770 genes involved in neuroinflammatory pathways in primary and secondary malignant meningioma patients who underwent one to several operations. METHODS: We identified a cohort of consecutive malignant meningioma patients treated at Rigshospitalet, Copenhagen from 2000–2020 (n=51) and gathered their malignant tumours and previous WHO grade I/II tumours. The malignant cohort (MC) was counter matched with a benign cohort (BC) where patients had no recurrences during follow-up. RNA expression signatures from 140 samples from the MC and 51 samples from the BC were analysed with the Nanostring Neuroinflammation panel customized with 30 genes known to be relevant in meningioma phenotypes. RESULTS: 49% of MC patients had a previous grade I/II meningioma making them secondary malignant meningioma patients. Progression-free survival calculated from first malignant surgery to first recurrence or death showed no significant difference in the primary vs. secondary patients. Preliminary results of single-gene analysis of MC tumours showed FOXM1, MYBL2, TOP2A, BIRC5 expression was higher in WHO grade III samples. Gene-expression signatures in the individual patients and gene ontology enrichment analyses are in process. CONCLUSIONS: FOXM1, MYBL2, TOP2A, BIRC5 RNA expression levels seem to rise during malignant progression across patients. Gene-expression analysis using the Nanostring technology is feasible and a potentially powerful tool to distinguish meningiomas prone to malignant transformation from truly benign meningiomas
    corecore