29 research outputs found

    Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example

    Full text link
    We extend our statistical mechanical theory of the glass transition from examples consisting of point particles to molecular liquids with internal degrees of freedom. As before, the fundamental assertion is that super-cooled liquids are ergodic, although becoming very viscous at lower temperatures, and are therefore describable in principle by statistical mechanics. The theory is based on analyzing the local neighborhoods of each molecule, and a statistical mechanical weight is assigned to every possible local organization. This results in an approximate theory that is in very good agreement with simulations regarding both thermodynamical and dynamical properties

    Solubility of CO 2

    No full text

    On the temperature dependence of the UNIQUAC/UNIFAC models

    No full text
    Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements of the simultaneous correlation. The temperature dependent parameters have, however, little physical meaning and very odd results are frequently obtained when the interaction parameters obtained from excess enthalpy information alone are used for the prediction of vapor-liquid equilibria. The UNIQUAC/UNIFAC models are modified in this work by the introduction of a general temperature dependence of the coordination number. The modified UNIQUAC/UNIFAC models are especially suited for the representation of mixtures containing non-associating components. The modified models contain the same number of interaction parameters as the original ones, namely two per binary pair of molecules/groups. The resulting simultaneous representation of excess Gibbs energy and excess enthalpy by means of one unique set of parameters is remarkably successful. One may with very good results predict excess Gibbs energy information from UNIQUAC parameters based on excess enthalpy data, and the prediction of excess enthalpy information from only one isothermal set of vapor-liquid equilibrium data is qualitatively acceptable. A parameter table for the modified UNIFAC model is given for the five main groups: CH2, C = C, ACH, ACCH2 and CH2O

    Density, Viscosity, and Surface and Interfacial Tensions of Mixtures of Water +  n -Butyl Acetate + 1-Propanol at 303.15 K and Atmospheric Pressure

    Get PDF
    Abstract Experimental densities, viscosities, and surface and interfacial tensions have been measured at 303.15 K for liquid mixtures of water + n-butyl acetate + 1-propanol. The excess molar volume, V E, viscosity, ?, and surface tension, ?, were calculated and rational functions due to Myers and Scott, and Pando et al. were used to describe the composition dependence of these properties. The viscosity, ?, of the mixtures was correlated using a theoretically based method developed from the Eyring theory using the above-mentioned rational functions to express the excess Gibbs energy of activation for viscous flow, G ?E. The UNIMOD model based on the Eyring theory was used to correlate the viscosity of the binaries and to predict the same property for ternary mixtures. To describe the above-mentioned properties of the ternary system, binary pair additivity and some empirical models were considered. The methods of Fu et al. and Li et al. were used to correlate the binary surface tension and also to predict the ternary behavior. The interfacial tension was correlated by the Li and Fu method
    corecore