7,539 research outputs found

    How does dissipation affect the transition from static to dynamic macroscopic friction?

    Get PDF
    Description of the transitional process from a static to a dynamic frictional regime is a fundamental problem of modern physics. Previously we developed a model based on the well-known Frenkel-Kontorova model to describe dry macroscopic friction. Here this model has been modified to include the effect of dissipation in derived relations between the kinematic and dynamic parameters of a transition process. The main (somewhat counterintuitive) result is a demonstration that the rupture (i.e. detachment front) velocity of the slip pulse which arises during the transition does not depend on friction. The only parameter (besides the elastic and plastic properties of the medium) controlling the rupture velocity is the shear to normal stress ratio. In contrast to the rupture velocity, the slip velocity does depend on friction. The model we have developed describes these processes over a wide range of rupture and slip velocities (up to 7 orders of magnitude) allowing, in particular, the consideration of seismic events ranging from regular earthquakes, with rupture velocities on the order of a few km/s, to slow slip events, with rupture velocities of a few km/day.Comment: 21 pages, 12 figure

    Why is the bulk resistivity of topological insulators so small?

    Full text link
    As-grown topological insulators (TIs) are typically heavily-doped nn-type crystals. Compensation by acceptors is used to move the Fermi level to the middle of the band gap, but even then TIs have a frustratingly small bulk resistivity. We show that this small resistivity is the result of band bending by poorly screened fluctuations in the random Coulomb potential. Using numerical simulations of a completely compensated TI, we find that the bulk resistivity has an activation energy of just 0.15 times the band gap, in good agreement with experimental data. At lower temperatures activated transport crosses over to variable range hopping with a relatively large localization length.Comment: 4+ pages, 3 figures; published versio
    corecore