9,476 research outputs found
Saturation-Dependence of Dispersion in Porous Media
In this study, we develop a saturation-dependent treatment of dispersion in
porous media using concepts from critical path analysis, cluster statistics of
percolation, and fractal scaling of percolation clusters. We calculate spatial
solute distributions as a function of time and calculate arrival time
distributions as a function of system size. Our previous results correctly
predict the range of observed dispersivity values over ten orders of magnitude
in experimental length scale, but that theory contains no explicit dependence
on porosity or relative saturation. This omission complicates comparisons with
experimental results for dispersion, which are often conducted at saturation
less than 1. We now make specific comparisons of our predictions for the
arrival time distribution with experiments on a single column over a range of
saturations. This comparison suggests that the most important predictor of such
distributions as a function of saturation is not the value of the saturation
per se, but the applicability of either random or invasion percolation models,
depending on experimental conditions
A Rich Population of X-ray Emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1
Recent optical and IR studies have revealed that the heavily-reddened
starburst cluster Westerlund 1 (Wd 1) contains at least 22 Wolf-Rayet (WR)
stars, comprising the richest WR population of any galactic cluster. We present
results of a senstive Chandra X-ray observation of Wd 1 which detected 12 of
the 22 known WR stars and the mysterious emission line star W9. The fraction of
detected WN stars is nearly identical to that of WC stars. The WN stars WR-A
and WR-B as well as W9 are exceptionally luminous in X-rays and have similar
hard heavily-absorbed spectra with strong Si XIII and S XV emission lines. The
luminous high-temperature X-ray emission of these three stars is characteristic
of colliding wind binary systems but their binary status remains to be
determined. Spectral fits of the X-ray bright sources WR-A and W9 with
isothermal plane-parallel shock models require high absorption column densities
log N = 22.56 (cm) and yield characteristic shock temperatures
kT_shock ~ 3 keV (T ~ 35 MK).Comment: ApJL, 2006, in press (3 figures, 1 table
Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach
We suggest an architecture for quantum computing with spin-pair encoded
qubits in silicon. Electron-nuclear spin-pairs are controlled by a dc magnetic
field and electrode-switched on and off hyperfine interaction. This digital
processing is insensitive to tuning errors and easy to model. Electron
shuttling between donors enables multi-qubit logic. These hydrogenic spin
qubits are transferable to nuclear spin-pairs, which have long coherence times,
and electron spin-pairs, which are ideally suited for measurement and
initialization. The architecture is scalable to highly parallel operation.Comment: 4 pages, 5 figures; refereed and published version with improved
introductio
Coulomb gap in the one-particle density of states in three-dimensional systems with localized electrons
The one-particle density of states (1P-DOS) in a system with localized
electron states vanishes at the Fermi level due to the Coulomb interaction
between electrons. Derivation of the Coulomb gap uses stability criteria of the
ground state. The simplest criterion is based on the excitonic interaction of
an electron and a hole and leads to a quadratic 1P-DOS in the three-dimensional
(3D) case. In 3D, higher stability criteria, including two or more electrons,
were predicted to exponentially deplete the 1P-DOS at energies close enough to
the Fermi level. In this paper we show that there is a range of intermediate
energies where this depletion is strongly compensated by the excitonic
interaction between single-particle excitations, so that the crossover from
quadratic to exponential behavior of the 1P-DOS is retarded. This is one of the
reasons why such exponential depletion was never seen in computer simulations.Comment: 6 pages, 1 figur
The High Energy Telescope on EXIST
The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed next
generation multi-wavelength survey mission. The primary instrument is a High
Energy telescope (HET) that conducts the deepest survey for Gamma-ray Bursts
(GRBs), obscured-accreting and dormant Supermassive Black Holes and Transients
of all varieties for immediate followup studies by the two secondary
instruments: a Soft X-ray Imager (SXI) and an Optical/Infrared Telescope (IRT).
EXIST will explore the early Universe using high redshift GRBs as cosmic probes
and survey black holes on all scales. The HET is a coded aperture telescope
employing a large array of imaging CZT detectors (4.5 m^2, 0.6 mm pixel) and a
hybrid Tungsten mask. We review the current HET concept which follows an
intensive design revision by the HET imaging working group and the recent
engineering studies in the Instrument and Mission Design Lab at the Goddard
Space Flight Center. The HET will locate GRBs and transients quickly (<10-30
sec) and accurately (< 20") for rapid (< 1-3 min) onboard followup soft X-ray
and optical/IR (0.3-2.2 micron) imaging and spectroscopy. The broad energy band
(5-600 keV) and the wide field of view (~90 deg x 70 deg at 10% coding
fraction) are optimal for capturing GRBs, obscured AGNs and rare transients.
The continuous scan of the entire sky every 3 hours will establish a
finely-sampled long-term history of many X-ray sources, opening up new
possibilities for variability studies.Comment: 10 pages, 6 figures, 3 tables, SPIE conference proceedings (UV,
X-ray, and Gamma-Ray Space Instrumentation for Astronomy XVI, 7435-9
Hydrogen and muonium in diamond: A path-integral molecular dynamics simulation
Isolated hydrogen, deuterium, and muonium in diamond have been studied by
path-integral molecular dynamics simulations in the canonical ensemble.
Finite-temperature properties of these point defects were analyzed in the range
from 100 to 800 K. Interatomic interactions were modeled by a tight-binding
potential fitted to density-functional calculations. The most stable position
for these hydrogenic impurities is found at the C-C bond center. Vibrational
frequencies have been obtained from a linear-response approach, based on
correlations of atom displacements at finite temperatures. The results show a
large anharmonic effect in impurity vibrations at the bond center site, which
hardens the vibrational modes with respect to a harmonic approximation.
Zero-point motion causes an appreciable shift of the defect level in the
electronic gap, as a consequence of electron-phonon interaction. This defect
level goes down by 70 meV when replacing hydrogen by muonium.Comment: 11 pages, 8 figure
Very High Resolution Solar X-ray Imaging Using Diffractive Optics
This paper describes the development of X-ray diffractive optics for imaging
solar flares with better than 0.1 arcsec angular resolution. X-ray images with
this resolution of the \geq10 MK plasma in solar active regions and solar
flares would allow the cross-sectional area of magnetic loops to be resolved
and the coronal flare energy release region itself to be probed. The objective
of this work is to obtain X-ray images in the iron-line complex at 6.7 keV
observed during solar flares with an angular resolution as fine as 0.1 arcsec -
over an order of magnitude finer than is now possible. This line emission is
from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma
at temperatures in excess of \approx10 MK. It provides information on the flare
morphology, the iron abundance, and the distribution of the hot plasma.
Studying how this plasma is heated to such high temperatures in such short
times during solar flares is of critical importance in understanding these
powerful transient events, one of the major objectives of solar physics. We
describe the design, fabrication, and testing of phase zone plate X-ray lenses
with focal lengths of \approx100 m at these energies that would be capable of
achieving these objectives. We show how such lenses could be included on a
two-spacecraft formation-flying mission with the lenses on the spacecraft
closest to the Sun and an X-ray imaging array on the second spacecraft in the
focal plane \approx100 m away. High resolution X-ray images could be obtained
when the two spacecraft are aligned with the region of interest on the Sun.
Requirements and constraints for the control of the two spacecraft are
discussed together with the overall feasibility of such a formation-flying
mission
Understanding the Mechanism of Arsenic Mobilisation and Behaviour in Tailings Dams
This study was carried out on leaching of tailings at 30 ᵒC and 40 ᵒC. The mineralogical and chemical composition of the tailings material were determined by Quantitative X-Ray Diffractometry (QXRD) and Scanning Electron Microscopy combined with Energy Dispersive Spectroscopy (SEM-EDAX). The study revealed that the tailings contain sulphides (arsenopyrite and pyrite) which can leach to produce arsenic (As) and other ions in solution. The acid released during leaching depends on the temperature of leaching. More acid was produced at higher temperature (40 ᵒC) than lower temperature (30 ᵒC). It was established that arsenic precipitation from solution was higher at higher temperature (40 ᵒC) than lower temperature (30 ᵒC). Mimicking the study in a typical tailings environment, it could be proposed that As mobilisation will be enhanced at lower temperature (30 ᵒC) than at higher temperature (40 ᵒC). Keywords: Tailings, Leaching, Arsenopyrite, Heavy metals and Temperatur
Imaging and burst location with the EXIST high-energy telescope
The primary instrument of the proposed EXIST mission is a coded mask high
energy telescope (the HET), that must have a wide field of view and extremely
good sensitivity. It will be crucial to minimize systematic errors so that even
for very long total integration times the imaging performance is close to the
statistical photon limit. There is also a requirement to be able to reconstruct
images on-board in near real time in order to detect and localize gamma-ray
bursts. This must be done while the spacecraft is scanning the sky. The
scanning provides all-sky coverage and is key to reducing systematic errors.
The on-board computational problem is made even more challenging for EXIST by
the very large number of detector pixels. Numerous alternative designs for the
HET have been evaluated. The baseline concept adopted depends on a unique coded
mask with two spatial scales. Monte Carlo simulations and analytic analysis
techniques have been used to demonstrate the capabilities of the design and of
the proposed two-step burst localization procedure
- …