11,495 research outputs found

    A Rich Population of X-ray Emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1

    Full text link
    Recent optical and IR studies have revealed that the heavily-reddened starburst cluster Westerlund 1 (Wd 1) contains at least 22 Wolf-Rayet (WR) stars, comprising the richest WR population of any galactic cluster. We present results of a senstive Chandra X-ray observation of Wd 1 which detected 12 of the 22 known WR stars and the mysterious emission line star W9. The fraction of detected WN stars is nearly identical to that of WC stars. The WN stars WR-A and WR-B as well as W9 are exceptionally luminous in X-rays and have similar hard heavily-absorbed spectra with strong Si XIII and S XV emission lines. The luminous high-temperature X-ray emission of these three stars is characteristic of colliding wind binary systems but their binary status remains to be determined. Spectral fits of the X-ray bright sources WR-A and W9 with isothermal plane-parallel shock models require high absorption column densities log NH_{H} = 22.56 (cm−2^{-2}) and yield characteristic shock temperatures kT_shock ~ 3 keV (T ~ 35 MK).Comment: ApJL, 2006, in press (3 figures, 1 table

    Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    Full text link
    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission, including the Fe K-alpha line complex, characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.Comment: To appear in conf. proceedings: Close Binaries in the 21st Century - New Opportunities and Challenges, eds. A. Gimenez, E. Guinan, P. Niarchos, S. Rucinski; Astrophys. and Space Sci. (special issue), 2006. 4 pages, 2 figure

    X-rays from T Tau: A test case for accreting T Tauri stars

    Get PDF
    We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (<~ 1E10 cm-3). The Ne/Fe abundance ratio is consistent with a trend in pre-main sequence stars in which this ratio depends on spectral type, but not on accretion. On the basis of line density diagnostics, we conclude that the density of the cool ``soft-excess'' plasma is orders of magnitude below that predicted for an accretion shock, assuming previously determined accretion rates of (3-6)E-8 M_sun/y. We argue that loading of magnetic field lines with infalling material suppresses the heating process in a part of the corona. We thus suggest that the X-ray production of T Tau is influenced by the accretion process although the X-rays may not form in the bulk of the accretion footpoints.Comment: 12 pages, 7 figures, A&A style. Accepted by A&A, to appear in a special section/issue dedicated to the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST). See also http://www.issibern.ch/teams/Taurus/papers.htm

    Populations of Pear Thrips, \u3ci\u3eTaeniothrips Inconsequens\u3c/i\u3e (Thysanoptera: Thripidae) in Sugar Maple Stands in Vermont: 1989-2005

    Get PDF
    Development of an effective IPM strategy for pear thrips, Taeniothrips inconsequens (Uzel) (Thysanoptera: Thripidae), a pest of sugar maple, Acer saccharum Marshall, demands an understanding of their population fluctuations over time. Pear thrips populations were monitored using a standardized soil sampling method every fall from 1989 – 2005 in 14 counties of Vermont (U.S.). Data from individual sites were combined into north, central and south regions. High numbers of thrips emerged from soil sampled in 1989, 1990, 1993 and 2001, particularly in the north region (Washington, Lamoille, and Franklin counties). The central and south regions had lower pear thrips populations over all years. These results provide, for the first time, fundamental knowledge of pear thrips populations across a wide geographical area of Vermont and will assist in the design of suitable control strategies for pear thrips in the future

    The Chandra X-ray Spectrum of the 10.6 s Pulsar in Westerlund 1: Testing the Magnetar Hypothesis

    Get PDF
    Two sensitive Chandra X-ray observations of the heavily-reddened galactic starburst cluster Westerlund 1 in May and June 2005 detected a previously unknown X-ray pulsar (CXO J164710.20-455217). Its slow 10.6 s pulsations, moderate X-ray temperature kT ≈\approx 0.5 keV, and apparent lack of a massive companion tentatively suggest that it is an Anomalous X-ray Pulsar (AXP). An isothermal blackbody model yields an acceptable spectral fit but the inferred source radius is much less than that of a neutron star, a result that has also been found for other AXPs. We analyze the X-ray spectra with more complex models including a model that assumes the pulsar is a strongly magnetized neutron star (``magnetar'') with a light element atmosphere. We conclude that the observed X-ray emission cannot be explained as global surface emission arising from the surface of a cooling neutron star or magnetar. The emission likely arises in one or more localized regions (``hot spots'') covering a small fraction of the surface. We discuss these new results in the context of both accretion and magnetar interpretations for the X-ray emission.Comment: 14 pages, 5 figures; to appear in Ap

    Anomalously large capacitance of a plane capacitor with a two-dimensional electron gas

    Full text link
    In electronic devices where a two-dimensional electron gas (2DEG) comprises one or both sides of a plane capacitor, the resulting capacitance CC can be larger than the "geometric capacitance" CgC_g determined by the physical separation dd between electrodes. This larger capacitance is known to result from the Coulomb correlations between individual electrons within the low density 2DEG, which lead to a negative thermodynamic density of states (negative compressibility). Experiments on such systems generally operate in the regime where the average spacing between electrons n−1/2n^{-1/2} in the 2DEG is smaller than dd, and these experiments observe C>CgC > C_g by only a few percent. A recent experiment [1], however, has observed CC larger than CgC_g by almost 40% while operating in the regime nd2<<1nd^2 << 1. In this paper we argue that at nd2<<1nd^2 << 1 correlations between the electronic charge of opposite electrodes become important. We develop a theory of the capacitance for the full range of nd2nd^2. We show that, in the absence of disorder, the capacitance can be 4d/a4d/a times larger than the geometric value, where a<<da << d is the electron Bohr radius. Our results compare favorably with the experiment of Ref. [1] without the use of adjustable parameters.Comment: 8 pages, 6 figures; revised discussion of the zero density limit; some typos fixe

    Probing Residue-Specific Interactions in the Stabilization of Proteins Using High-Resolution NMR: A Study of Disulfide Bond Compensation

    Get PDF
    It is well established that the oxidation state of cysteine residues in proteins are critical to overall physical stability. The presence of disulfide bonds most often imparts thermodynamic stability, and as such, engineered disulfide bonds have become a means for improving the viability of protein therapeutics. In some cases, however, disulfide bonds can diminish stability. Because proteins are held together by numerous weak interactions, understanding the mechanisms by which stabilization is achieved is important to the design of new biotechnology products that better resist unfolding and aggregation. Mechanistic information describing how specific interactions influence stability is lacking, in part because the techniques typically used to study inherent stability do not provide sufficient detail. In the present study, a model protein system, phosphatase of regenerating liver (PRL-1), was used to investigate the role of cysteine residues on physical stability. A combination of chemical modulation and mutagenesis was employed to alter the redox state of the protein, and the effects were observed using a combination of low- and high-resolution methods. Specifically, solution NMR data revealed the stability of PRL-1 depends on cooperation between local interactions with the Cys side chains. This approach provides a means to better understand how protein stabilization is achieved
    • 

    corecore