88 research outputs found

    Galaxy formation with cold gas accretion and evolving stellar initial mass function

    Full text link
    The evolution of the galaxy stellar mass function is especially useful to test the current model of galaxy formation. Observational data have revealed a few inconsistencies with predictions from the ΛCDM\Lambda {\rm CDM} model. For example, most massive galaxies have already been observed at very high redshifts, and they have experienced only mild evolution since then. In conflict with this, semi-analytical models of galaxy formation predict an insufficient number of massive galaxies at high redshift and a rapid evolution between redshift 1 and 0 . In addition, there is a strong correlation between star formation rate and stellar mass for star-forming galaxies, which can be roughly reproduced with the model, but with a normalization that is too low at high redshift. Furthermore, the stellar mass density obtained from the integral of the cosmic star formation history is higher than the measured one by a factor of 2. In this paper, we study these issues using a semi-analytical model that includes: 1) cold gas accretion in massive halos at high redshift; 2) tidal stripping of stellar mass from satellite galaxies; and 3) an evolving stellar initial mass function (bottom-light) with a higher gas recycle fraction. Our results show that the combined effects from 1) and 2) can predict sufficiently massive galaxies at high redshifts and reproduce their mild evolution at low redshift, While the combined effects of 1) and 3) can reproduce the correlation between star formation rate and stellar mass for star-forming galaxies across wide range of redshifts. A bottom-light/top-heavy stellar IMF could partly resolve the conflict between the stellar mass density and cosmic star formation history.Comment: 9 pages, 7 figures. Accepted for publication in Ap

    Satellite Luminosities in Galaxy Groups

    Full text link
    Halo model interpretations of the luminosity dependence of galaxy clustering assume that there is a central galaxy in every sufficiently massive halo, and that this central galaxy is very different from all the others in the halo. The halo model decomposition makes the remarkable prediction that the mean luminosity of the non-central galaxies in a halo should be almost independent of halo mass: the predicted increase is about 20% while the halo mass increases by a factor of more than 20. In contrast, the luminosity of the central object is predicted to increase approximately linearly with halo mass at low to intermediate masses, and logarithmically at high masses. We show that this weak, almost non-existent mass-dependence of the satellites is in excellent agreement with the satellite population in group catalogs constructed by two different collaborations. This is remarkable, because the halo model prediction was made without ever identifying groups and clusters. The halo model also predicts that the number of satellites in a halo is drawn from a Poisson distribution with mean which depends on halo mass. This, combined with the weak dependence of satellite luminosity on halo mass, suggests that the Scott effect, such that the luminosities of very bright galaxies are merely the statistically extreme values of a general luminosity distribution, may better apply to the most luminous satellite galaxy in a halo than to BCGs. If galaxies are identified with halo substructure at the present time, then central galaxies should be about 4 times more massive than satellite galaxies of the same luminosity, whereas the differences between the stellar M/L ratios should be smaller. Therefore, a comparison of the weak lensing signal from central and satellite galaxies should provide useful constraints. [abridged]Comment: 8 pages, 3 figures. Matches version accepted by MNRA

    Central and Satellite Colors in Galaxy Groups: A Comparison of the Halo Model and SDSS Group Catalogs

    Full text link
    Current analytic and semi-analytic dark matter halo models distinguish between the central galaxy in a halo and the satellite galaxies in halo substructures. Using a recent halo-model description of the color dependence of galaxy clustering (Skibba & Sheth 2008), we investigate the colors of central and satellite galaxies predicted by the model and compare them to those of two galaxy group catalogs constructed from the Sloan Digital Sky Survey (Yang et al. 2007, Berlind et al. 2006a). In the model, the environmental dependence of galaxy color is determined by that of halo mass, and the predicted color mark correlations were shown to be consistent with SDSS measurements. The model assumes that satellites tend to follow a color-magnitude sequence that approaches the red sequence at bright luminosities; the model's success suggests that bright satellites tend to be `red and dead' while the star formation in fainter ones is in the process of being quenched. In both the model and the SDSS group catalogs, we find that at fixed luminosity or stellar mass, central galaxies tend to be bluer than satellites. In contrast, at fixed group richness or halo mass, central galaxies tend to be redder than satellites, and galaxy colors become redder with increasing mass. We also compare the central and satellite galaxy color distributions, as a function of luminosity and as a function of richness, in the model and in the two group catalogs. Except for faint galaxies and small groups, the model and both group catalogs are in very good agreement.Comment: 9 pages, 7 figures, revised version submitted to MNRAS. Significant revisions were made, and figures were added showing the color distributions. Important correction: the model and both group catalogs now have consistent satellite colors--almost independent of group richnes

    PRIMUS: The Effect of Physical Scale on the Luminosity-Dependence of Galaxy Clustering via Cross-Correlations

    Full text link
    We report small-scale clustering measurements from the PRIMUS spectroscopic redshift survey as a function of color and luminosity. We measure the real-space cross-correlations between 62,106 primary galaxies with PRIMUS redshifts and a tracer population of 545,000 photometric galaxies over redshifts from z=0.2 to z=1. We separately fit a power-law model in redshift and luminosity to each of three independent color-selected samples of galaxies. We report clustering amplitudes at fiducial values of z=0.5 and L=1.5 L*. The clustering of the red galaxies is ~3 times as strong as that of the blue galaxies and ~1.5 as strong as that of the green galaxies. We also find that the luminosity dependence of the clustering is strongly dependent on physical scale, with greater luminosity dependence being found between r=0.0625 Mpc/h and r=0.25 Mpc/h, compared to the r=0.5 Mpc/h to r=2 Mpc/h range. Moreover, over a range of two orders of magnitude in luminosity, a single power-law fit to the luminosity dependence is not sufficient to explain the increase in clustering at both the bright and faint ends at the smaller scales. We argue that luminosity-dependent clustering at small scales is a necessary component of galaxy-halo occupation models for blue, star-forming galaxies as well as for red, quenched galaxies.Comment: 13 pages, 6 figures, 5 tables; published in ApJ (revised to match published version

    Dark Matter Halo Models of Stellar Mass-Dependent Galaxy Clustering in PRIMUS+DEEP2 at 0.2<z<1.2

    Full text link
    We utilize Λ\LambdaCDM halo occupation models of galaxy clustering to investigate the evolving stellar mass dependent clustering of galaxies in the PRIsm MUlti-object Survey (PRIMUS) and DEEP2 Redshift Survey over the past eight billion years of cosmic time, between 0.2<z<1.20.2<z<1.2. These clustering measurements provide new constraints on the connections between dark matter halo properties and galaxy properties in the context of the evolving large-scale structure of the universe. Using both an analytic model and a set of mock galaxy catalogs, we find a strong correlation between central galaxy stellar mass and dark matter halo mass over the range Mhalo∼1011M_\mathrm{halo}\sim10^{11}-1013 h−1M⊙10^{13}~h^{-1}M_\odot, approximately consistent with previous observations and theoretical predictions. However, the stellar-to-halo mass relation (SHMR) and the mass scale where star formation efficiency reaches a maximum appear to evolve more strongly than predicted by other models, including models based primarily on abundance-matching constraints. We find that the fraction of satellite galaxies in haloes of a given mass decreases significantly from z∼0.5z\sim0.5 to z∼0.9z\sim0.9, partly due to the fact that haloes at fixed mass are rarer at higher redshift and have lower abundances. We also find that the M1/MminM_1/M_\mathrm{min} ratio, a model parameter that quantifies the critical mass above which haloes host at least one satellite, decreases from ≈20\approx20 at z∼0z\sim0 to ≈13\approx13 at z∼0.9z\sim0.9. Considering the evolution of the subhalo mass function vis-\`{a}-vis satellite abundances, this trend has implications for relations between satellite galaxies and halo substructures and for intracluster mass, which we argue has grown due to stripped and disrupted satellites between z∼0.9z\sim0.9 and z∼0.5z\sim0.5.Comment: 17 pages, 9 figures and 4 tables; Astrophysical Journal, publishe

    Galaxy Zoo: Disentangling the Environmental Dependence of Morphology and Colour

    Get PDF
    We analyze the environmental dependence of galaxy morphology and colour with two-point clustering statistics, using data from the Galaxy Zoo, the largest sample of visually classified morphologies yet compiled, extracted from the Sloan Digital Sky Survey. We present two-point correlation functions of spiral and early-type galaxies, and we quantify the correlation between morphology and environment with marked correlation functions. These yield clear and precise environmental trends across a wide range of scales, analogous to similar measurements with galaxy colours, indicating that the Galaxy Zoo classifications themselves are very precise. We measure morphology marked correlation functions at fixed colour and find that they are relatively weak, with the only residual correlation being that of red galaxies at small scales, indicating a morphology gradient within haloes for red galaxies. At fixed morphology, we find that the environmental dependence of colour remains strong, and these correlations remain for fixed morphology \textit{and} luminosity. An implication of this is that much of the morphology--density relation is due to the relation between colour and density. Our results also have implications for galaxy evolution: the morphological transformation of galaxies is usually accompanied by a colour transformation, but not necessarily vice versa. A spiral galaxy may move onto the red sequence of the colour-magnitude diagram without quickly becoming an early-type. We analyze the significant population of red spiral galaxies, and present evidence that they tend to be located in moderately dense environments and are often satellite galaxies in the outskirts of haloes. Finally, we combine our results to argue that central and satellite galaxies tend to follow different evolutionary paths.Comment: 19 pages, 18 figures. Accepted for publication in MNRA
    • …
    corecore