10 research outputs found

    Fetal in vivo continuous cardiovascular function during chronic hypoxia.

    Get PDF
    Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species.This work was supported by the British Heart Foundation.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1113/JP27109

    Effect of disease on proteome changes in ventricular biopsies collected before cardioplegic arrest and after reperfusion from patients undergoing open heart surgery

    Get PDF
    Our earlier work has shown inter‑disease and intra‑disease differences in the cardiac proteome between right (RV) and left (LV) ventricles of patients with aortic valve stenosis (AVS) or coronary artery disease (CAD). Whether disease remodeling also affects acute changes occuring in the proteome during surgical intervention is unknown. This study investigated the effects of cardioplegic arrest on cardiac proteins/phosphoproteins in LV and RV of CAD (n=6) and AVS (n=6) patients undergoing cardiac surgery. LV and RV biopsies were collected during surgery before ischemic cold blood cardioplegic arrest (pre) and 20 min after reperfusion (post). Tissues were snap frozen, proteins extracted, and the extracts were used for proteomic and phosphoproteomic analysis using Tandem Mass Tag (TMT) analysis. The results were analysed using QuickGO and Ingenuity Pathway Analysis softwares. For each comparision, our proteomic analysis identified more than 3,000 proteins which could be detected in both the pre and Post samples. Cardioplegic arrest and reperfusion were associated with significant differential expression of 24 (LV) and 120 (RV) proteins in the CAD patients, which were linked to mitochondrial function, inflammation and cardiac contraction. By contrast, AVS patients showed differential expression of only 3 LV proteins and 2 RV proteins, despite a significantly longer duration of ischaemic cardioplegic arrest. The relative expression of 41 phosphoproteins was significantly altered in CAD patients, with 18 phosphoproteins showing altered expression in AVS patients. Inflammatory pathways were implicated in the changes in phosphoprotein expression in both groups. Inter‑disease comparison for the same ventricular chamber at both timepoints revealed differences relating to inflammation and adrenergic and calcium signalling. In conclusion, the present study found that ischemic arrest and reperfusion trigger different changes in the proteomes and phosphoproteomes of LV and RV of CAD and AVS patients undergoing surgery, with markedly more changes in CAD patients despite a significantly shorter ischaemic period
    corecore