33 research outputs found

    A new daily observational record from Grytviken, South Georgia: exploring 20th century extremes in the South Atlantic

    Get PDF
    Although recent work has highlighted a host of significant late 20th century environmental changes across the mid to high latitudes of the Southern Hemisphere, the sparse nature of observational records limits our ability to place these changes in the context of long-term (multi-decadal and centennial) variability. Historical records from sub-Antarctic islands offer considerable potential for developing highly resolved records of change. In 1905, a whaling and meteorological station was established at Grytviken on sub-Antarctic South Georgia in the South Atlantic (54°S, 36°W) providing near-continuous daily observations through to present day. Here we report a new, daily observational record of temperature and precipitation from Grytviken, which we compare to regional datasets and historical reanalysis (Twentieth Century Reanalysis; 20CR version 2c). We find a shift towards increasingly warmer daytime extremes commencing from the mid-20th century and accompanied by warmer night-time temperatures, with an average rate of temperature rise of 0.13°C per decade over the period 1907-2016 (p<0.0001). Analysis of these data, and reanalysis products, suggest a change of particular synoptic conditions across the mid to high-latitudes since the mid-20th century, characterised by stronger westerly airflow and associated warm föhn winds across South Georgia. This rapid rate of warming and associated declining habitat suitability has substantial negative implications for biodiversity levels and survival of key marine biota in the region

    Extreme and long-term drought in the La Plata Basin: event evolution and impact assessment until September 2022

    Get PDF
    The current drought conditions across the Parana-La Plata Basin (LPB) in Brazil-Argentina have been the worst since 1944. While this area is characterized by a rainy season with a peak from October to April, the hydrological year 2020-2021 was very deficient in rainfall, and the situation extended into the 2021-2022 hydrological year. Below-normal rainfall was dominant in south-eastern Brazil, northern Argentina, Paraguay, and Uruguay, suggesting a late onset and weaker South American Monsoon and the continuation of drier conditions since 2021. In fact, in 2021 Brazilian south and south-east regions faced their worst droughts in nine decades, raising the spectre of possible power rationing given the grid dependence on hydroelectric plants. The Paraná-La Plata Basin drought induced damages to agriculture and reduced crop production, including soybeans and maize, with effects on global crop markets. The drought situation continued in 2022 in the Pantanal region. Dry meteorological conditions are still present in the region at the end of September 2022 with below-average precipitation anomalies. Soil moisture anomaly and vegetation conditions are worst in the lower part of the La Plata Basin, in the southern regions. Conversely, upper and central part of the basin show partial and temporary recovery

    A cold wave of winter 2021 in central South America: characteristics and impacts

    Get PDF
    During the austral winter (June–August) of 2021, the meteorological services of Brazil, Argentina, Peru, Paraguay, Bolivia, and Chile all issued forecasts for unusually cold conditions. Record-low minimum temperatures and cold spells were documented, including one strong cold wave episode that affected 5 countries. In this study, we define a cold wave as a period in which daily maximum and minimum air temperatures are below the corresponding climatological 10th percentile for three or more consecutive days. The intense cold wave event in the last week of June, 2021, resulted in record-breaking minimum daily temperatures in several places in central South America and Chile. Several locations had temperatures about 10 °C below average, central South America had freezing conditions, and southern Brazil even saw snow. The cold air surge was characterized by an intense upper-air trough located close to 35° S and 70° W. The southerly flow to the west of this trough brought very cold air northward into subtropical and tropical South America. A northward flow between the lower-level cyclonic and anticyclonic perturbations caused the intense southerly flow between the upper-level ridge and trough. This condition facilitated the inflow of near-surface cold air from southern Argentina into southeastern Brazil and tropical South America east of the Andes. In the city of São Paulo, the cold wave caused the death of 13 homeless people from hypothermia. Frost and snow across southern and southeastern Brazil caused significant damage to coffee, sugarcane, oranges, grapes, and other fruit and vegetable crops. Wine and coffee production fell, the latter by 30%, and prices of food and commodities in the region rose

    Brief considerations on the Accademia Bridge in Venice

    No full text

    Bridges in Venice - Architectural and structural engineering aspects

    No full text

    Assessment of ECMWF SEAS5 seasonal forecast performance over South America

    Get PDF
    Seasonal predictions have a great socioeconomic potential if they are reliable and skillful. In this study, we assess the prediction performance of SEAS5, version 5 of the seasonal prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF), over South America against homogenized station data. For temperature, we find the highest prediction performances in the tropics during austral summer, where the probability that the predictions correctly discriminate different observed outcomes is 70%. In regions lying to the east of the Andes, the predictions of maximum and minimum temperature still exhibit considerable performance, while farther to the south in Chile and Argentina the temperature prediction performance is low. Generally, the prediction performance of minimum temperature is slightly lower than for maximum temperature. The prediction performance of precipitation is generally lower and spatially and temporally more variable than for temperature. The highest prediction performance is observed at the coast and over the highlands of Colombia and Ecuador, over the northeastern part of Brazil, and over an isolated region to the north of Uruguay during DJF. In general, Niño-3.4 has a strong influence on both air temperature and precipitation in the regions where ECMWF SEAS5 shows high performance, in some regions through teleconnections (e.g., to the north of Uruguay). However, we show that SEAS5 outperforms a simple empirical prediction based on Niño-3.4 in most regions where the prediction performance of the dynamical model is high, thereby supporting the potential benefit of using a dynamical model instead of statistical relationships for predictions at the seasonal scal

    Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America

    No full text
    Here we show and discuss the results of an assessment of changes in both area-averaged and station-based climate extreme indices over South America (SA) for the 1950-2010 and 1969-2009 periods using high-quality daily maximum and minimum temperature and precipitation series. A weeklong regional workshop in Guayaquil (Ecuador) provided the opportunity to extend the current picture of changes in climate extreme indices over SA.Our results provide evidence of warming and wetting across the whole SA since the mid-20th century onwards. Nighttime (minimum) temperature indices show the largest rates of warming (e.g. for tropical nights, cold and warm nights), while daytime (maximum) temperature indices also point to warming (e.g. for cold days, summer days, the annual lowest daytime temperature), but at lower rates than for minimums. Both tails of night-time temperatures have warmed by a similar magnitude, with cold days (the annual lowest nighttime and daytime temperatures) seeing reductions (increases). Trends are strong and moderate (moderate to weak) for regional-averaged (local) indices, most of them pointing to a less cold SA during the day and warmer night-time temperatures.Regionally-averaged precipitation indices show clear wetting and a signature of intensified heavy rain events over the eastern part of the continent. The annual amounts of rainfall are rising strongly over south-east SA (26.41. mm/decade) and Amazonia (16.09. mm/decade), but north-east Brazil and the western part of SA have experienced non-significant decreases. Very wet and extremely days, the annual maximum 5-day and 1-day precipitation show the largest upward trends, indicating an intensified rainfall signal for SA, particularly over Amazonia and south-east SA. Local trends for precipitation extreme indices are in general less coherent spatially, but with more general spatially coherent upward trends in extremely wet days over all SA

    A cold wave of winter 2021 in central South America: Characteristics and impacts

    No full text
    During the austral winter (June–August) of 2021, the meteorological services of Brazil, Argentina, Peru, Paraguay, Bolivia, and Chile all issued forecasts for unusually cold conditions. Record-low minimum temperatures and cold spells were documented, including one strong cold wave episode that affected 5 countries. In this study, we define a cold wave as a period in which daily maximum and minimum air temperatures are below the corresponding climatological 10th percentile for three or more consecutive days. The intense cold wave event in the last week of June, 2021, resulted in record-breaking minimum daily temperatures in several places in central South America and Chile. Several locations had temperatures about 10 °C below average, central South America had freezing conditions, and southern Brazil even saw snow. The cold air surge was characterized by an intense upper-air trough located close to 35° S and 70° W. The southerly flow to the west of this trough brought very cold air northward into subtropical and tropical South America. A northward flow between the lower-level cyclonic and anticyclonic perturbations caused the intense southerly flow between the upper-level ridge and trough. This condition facilitated the inflow of near-surface cold air from southern Argentina into southeastern Brazil and tropical South America east of the Andes. In the city of São Paulo, the cold wave caused the death of 13 homeless people from hypothermia. Frost and snow across southern and southeastern Brazil caused significant damage to coffee, sugarcane, oranges, grapes, and other fruit and vegetable crops. Wine and coffee production fell, the latter by 30%, and prices of food and commodities in the region rose.Fil: Marengo, J.. Cemaden; BrasilFil: Espinoza, J.C.. Centre National de la Recherche Scientifique. Institut des Géosciences de l'Environnement; FranciaFil: Bettolli, Maria Laura. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; ArgentinaFil: Cunha, A.P.. Cemaden; BrasilFil: Molina Carpio, J.. Universidad Mayor de San Andrés; BoliviaFil: Skansi, M.. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Correa, K.. Servicio Nacional de Meteorologia e Hidrologia; PerúFil: Ramos, A.M.. Instituto Nacional de Meteorologia; BrasilFil: Salinas, R.. Dirección de Meteorología E Hidrología; ParaguayFil: Sierra, J.-P.. Centre National de la Recherche Scientifique. Institut des Géosciences de l'Environnement; Franci

    Evolution of smart service architectures through cognitive co-creation

    No full text
    Today, many companies are adapting their strategy, business models, products, services as well as business processes and information systems in order to expand their digitalization level through intelligent systems and services. The paper raises an important question: What are cognitive co-creation mechanisms for extending digital services and architectures to readjust the usage value of smart services? Typically, extensions of digital services and products and their architectures are manual design tasks that are complex and require specialized, rare experts. The current publication explores the basic idea of extending specific digital artifacts, such as intelligent service architectures, through mechanisms of cognitive co-creation to enable a rapid evolutionary path and better integration of humans and intelligent systems. We explore the development of intelligent service architectures through a combined, iterative, and permanent task of co-creation between humans and intelligent systems as part of a new concept of cognitively adapted smart services. In this paper, we present components of a new platform for the joint co-creation of cognitive services for an ecosystem of intelligent services that enables the adaptation of digital services and architectures
    corecore