11 research outputs found

    Article Improving the Dimensional Stability and Mechanical Properties of AISI 316L + B Sinters by Si3N4 Addition

    Get PDF
    The following paper describes a new and effective method to obtain high-density sinters with simultaneously decreased distortions, produced by one press and sinter operation. This effect was achieved through the induced disappearance of the eutectic liquid phase. The study was carried out on AISI 316L stainless steel powder that was mixed with elemental boron and silicon nitride. Boron was used as a sintering process activator. The scientific novelty of this publication consists of the use of a silicon nitride as a solid-state nitrogen carrier that was intended to change the borides’ morphology by binding boron. Based on the thermodynamic calculations, 20 blends of various compositions were tested for physical properties, porosity, microstructure, and mechanical properties. Moreover, phase compositions for selected samples were analyzed. It was shown that the addition of silicon nitride as a nitrogen carrier decreases the boron-based eutectic phase volume and both increases the mechanical properties and decreases after-sintering distortions. An explanation of the observed phenomena was also proposed

    Influence of Melt-Pool Stability in 3D Printing of NdFeB Magnets on Density and Magnetic Properties

    Get PDF
    The current work presents the results of an investigation focused on the influence of process parameters on the melt-track stability and its consequence to the sample density printed out of NdFeB powder. Commercially available powder of Nd7.5Pr0.7Fe75.4Co2.5B8.8Zr2.6Ti2.5 alloy was investigated at the angle of application in selective laser melting of permanent magnets. Using single track printing the stability of the melt pool was investigated under changing process parameters. The influence of changing laser power, scanning speed, and powder layer thickness on density, porosity structure, microstructure, phase composition, and magnetic properties were investigated. The results showed that energy density coupled with powder layer thickness plays a crucial role in melt-track stability. It was possible to manufacture magnets of both high relative density and high magnetic properties. Magnetization tests showed a significant correlation between the shape of the demagnetization curve and the layer height. While small layer heights are beneficial for sufficient magnetic properties, the remaining main parameters tend to affect the magnetic properties less. A quasi-linear correlation between the layer height and the magnetic properties remanence (Jr), coercivity (HcJ) and maximum energy product ((BH)max) was found

    Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting

    Get PDF
    The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium

    Preparation Method of Spherical and Monocrystalline Aluminum Powder

    No full text
    This paper presents a new production method for a spherical and monocrystalline aluminum powder. Aluminum powder of irregular particle shapes was mixed with silica nanoparticles and heated to a temperature above the melting point of aluminum. Due to its molten state, high surface tension, and poor wettability, the aluminum particles were transformed into liquid and spherical droplets separated by silica nanoparticles. The spherical shape was then retained when the aluminum particles solidified. The influence of the processing temperature on the particle shape, phase composition, and microstructure was investigated. Moreover, calorimetric, X-ray diffraction, grain size, and scanning electron microscopy with electron backscatter diffraction (SEM-EBSD) measurements of the particles’ microstructure are presented. It is proven that, by this means, a spherical and monocrystalline aluminum powder can be efficiently created directly from an air-atomized irregular powder. The observed phenomenon of particles becoming round is of great importance, especially when considering powder preparation for powder-based additive manufacturing processes

    Stability of a Melt Pool during 3D-Printing of an Unsupported Steel Component and Its Influence on Roughness

    No full text
    The following work presents the results of an investigation of the cause–effect relationship between the stability of a melt pool and the roughness of an inclined, unsupported steel surface that was 3D-printed using the laser powder bed fusion (PBF-L/M) process. In order to observe the balling effect and decrease in surface quality, the samples were printed with no supporting structures placed on the downskin. The stability of the melt pool was investigated as a function of both the inclination angle and along the length of the melt pool. Single-track cross-sections were described by shape parameters and were compared and used to calculate the forces acting on the melt pool as the downskin was printed. The single-melt track tests were printed to produce a series of samples with increasing inclination angles with respect to the baseplate. The increasing angles enabled us to physically simulate specific solidification conditions during the sample printing process. As the inclination angle of the unsupported surface increased, the melt-pool altered in terms of its size, geometry, contact angles, and maximum length of stability. The balling phenomenon was observed, quantified, and compared using roughness tests; it was influenced by the melt track stability according to its geometry. The research results show that a higher linear energy input may decrease the roughness of unsupported surfaces with low inclination angles, while a lower linear energy input may be more effective with higher inclination angles

    Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components

    No full text
    The quality and characteristics of a powder in powder bed fusion processes play a vital role in the quality of additively manufactured components. Its characteristics may influence the process in various ways. This paper presents an investigation highlighting the influence of powder deterioration on the stability of a molten pool in a laser beam powder bed fusion (LB-PBF, selective laser melting) process and its consequences to the physical properties of the alloy, porosity of 3D-printed components and their mechanical properties. The intention in this was to understand powder reuse as a factor playing a role in the formation of porosity in 3D-printed components. Ti6Al4V (15 μm–45 μm) was used as a base material in the form of a fresh powder and a degraded one (reused 12 times). Alloy degradation is described by possible changes in the shape of particles, particle size distribution, chemical composition, surface tension, density and viscosity of the melt. An approach of 3D printing singular lines was applied in order to study the behavior of a molten pool at varying powder bed depths. Single-track cross-sections (STCSs) were described with shape parameters and compared. Furthermore, the influence of the molten pool stability on the final density and mechanical properties of a material was discussed. Electromagnetic levitation (EML) was used to measure surface tension and the density of the melt using pieces of printed samples. It was found that the powder degradation influences the mechanical properties of a printed material by destabilizing the pool of molten metal during printing operation by facilitating the axial flow on the melt along the melt track axis. Additionally, the observed axial flow was found to facilitate a localized lack of fusion between concurrent layers. It was also found that the surface tension and density of the melt are only impacted marginally or not at all by increased oxygen content, yet a difference in the temperature dependence of the surface tension was observed

    Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components

    No full text
    The quality and characteristics of a powder in powder bed fusion processes play a vital role in the quality of additively manufactured components. Its characteristics may influence the process in various ways. This paper presents an investigation highlighting the influence of powder deterioration on the stability of a molten pool in a laser beam powder bed fusion (LB-PBF, selective laser melting) process and its consequences to the physical properties of the alloy, porosity of 3D-printed components and their mechanical properties. The intention in this was to understand powder reuse as a factor playing a role in the formation of porosity in 3D-printed components. Ti6Al4V (15 μm–45 μm) was used as a base material in the form of a fresh powder and a degraded one (reused 12 times). Alloy degradation is described by possible changes in the shape of particles, particle size distribution, chemical composition, surface tension, density and viscosity of the melt. An approach of 3D printing singular lines was applied in order to study the behavior of a molten pool at varying powder bed depths. Single-track cross-sections (STCSs) were described with shape parameters and compared. Furthermore, the influence of the molten pool stability on the final density and mechanical properties of a material was discussed. Electromagnetic levitation (EML) was used to measure surface tension and the density of the melt using pieces of printed samples. It was found that the powder degradation influences the mechanical properties of a printed material by destabilizing the pool of molten metal during printing operation by facilitating the axial flow on the melt along the melt track axis. Additionally, the observed axial flow was found to facilitate a localized lack of fusion between concurrent layers. It was also found that the surface tension and density of the melt are only impacted marginally or not at all by increased oxygen content, yet a difference in the temperature dependence of the surface tension was observed
    corecore