14 research outputs found

    Mind tricks for presence

    Get PDF
    As virtual and mixed reality (VR/MR) technology moves steadily towards general availability accessible descriptions of the surrounding theory is desirable. An initial focus on high-level concepts can provide common language for diverse teams, including artists, designers and engineers, helping them to quickly get a sense of basic principles and gain a familiarity with related research for further study. The concepts of synchronized reality and grounded simulation are introduced as helpful starting points for thinking about the design and development of mixed reality systems with optimal presence. This paper provides case studies where recent commercial VR applications are analyzed with the proposed principles in mind, in an attempt to illustrate to developers how to think about design of mixed reality games for optimal presence

    Conflict Barometer 2008 : Crises, Wars, Coups d’État, Negotiations, Mediations, Peace Settlements

    No full text
    Recent developments within human-computer interaction (HCI) and cognitive neuroscience have come together to motivate and enable a framework for HCI with a solid basis in brain function and human reality. Human cognition is increasingly considered to be critically related to the development of human capabilities in the everyday environment (reality). At the same time, increasingly powerful computers continuously make the development of complex applications with realistic interaction easier. Advances in cognitive neuroscience and brain-computer interfaces (BCIs) make it possible to use an understanding of how the brain works in realistic environments to interpret brain measurements and adapt interaction in computer-generated virtual environments (VEs). Adaptive and realistic computer applications have great potential for training, rehabilitation and diagnosis. Realistic interaction environments are important to facilitate transfer to everyday reality and to gain ecological validity. The ability to adapt the interaction is very valuable as any training or learning must be done at the right level in order to optimize the development of skills. The use of brain measurements as input to computer applications makes it possible to get direct information about how the brain reacts to aspects of a VE. This provides a basis for the development of realistic and adaptive computer applications that target cognitive skills and abilities. Theories of cognition and brain function provide a basis for how such cognitive skills develop, through internalization of interaction with the current environment. By considering how internalization leads to the neural implementation and continuous adaptation of mental simulations in the brain it is possible to relate designed phenomena in a VE to brain measurements. The work presented in this thesis contributes to a foundation for the development of reality-based brain-computer interaction (RBBCI) applications by combining VR with emerging BCI methods based on an understanding of the human brain in human reality. RBBCI applications can be designed and developed to interact directly with the brain by interpreting brain measurements as responses to deliberate manipulations of a computer-generated reality. As the application adapts to these responses an interaction loop is created that excludes the conscious user. The computer interacts with the brain, through (the virtual) reality.Den senaste tidens utveckling inom mÀnniska-dator-interaktion (MDI) och kognitiv neurovetenskap har samverkat till att motivera och möjliggöra ett ramverk för MDI med en stabil grund i hjÀrnfunktion och mÀnniskors verklighet. MÀnsklig kognition anses till allt högre grad vara kritisk beroende av hur mÀnniskors förmÄgor utvecklas i den vardagliga miljön (verkligheten). Samtidigt har stÀndigt kraftfullare datorer gjort det allt lÀttare att utveckla komplexa applikationer med realistisk interaktion. Framsteg inom kognitiv neurovetenskap och hjÀrna-dator-grÀnssnitt (brain-computer interface, BCI) gör det möjligt att dra nytta av en förstÄelse av hur hjÀrnan fungerar i realistiska miljöer för att tolka hjÀrnmÀtningar och anpassa interaktion i datorgenererade virtuella miljöer (virtual environment, VE). Adaptiva och realistiska datorapplikationer har stor potential för trÀning, rehabilitering och diagnostik. Realistiska interaktionsmiljöer Àr viktiga för att underlÀtta överföring (transfer) till vardagen och för att nÄ ekologisk validitet. Möjligheten att anpassa interaktion Àr mycket vÀrdefull eftersom trÀning och lÀrande mÄste ske pÄ rÀtt nivÄ för att optimera effekten. Genom att anvÀnda sig av hjÀrnmÀtningar som indata till datorprogram blir det möjligt att fÄ direkt information om hur hjÀrnan reagerar pÄ olika aspekter av en VE. Detta ger en grund för utveckling av realistiska och adaptiva datorprogram som riktar in sig pÄ kognitiva fÀrdigheter och förmÄgor. Teorier om kognition och hjÀrnan ger en bas för att förstÄ hur sÄdana kognitiva fÀrdigheter utvecklas genom att interaktion med omgivningen internaliseras. Genom att ta hÀnsyn till hur internalisering leder till stÀndig utveckling av mentala simuleringar i hjÀrnan Àr det möjligt att relatera designade fenomen i en VE till hjÀrnmÀtningar. Det arbete som presenteras i denna avhandling lÀgger en grund för utveckling av verklighets-baserad hjÀrna-dator-interaktions (reality-based brain-computer interaction, RBBCI) applikationer genom att kombinera VR med nya BCI metoder, baserat pÄ en förstÄelse av den mÀnskliga hjÀrnan i mÀnniskans verklighet. RBBCI-program kan designas och utvecklas för att interagera direkt med hjÀrnan genom att tolka hjÀrnmÀtningar som respons pÄ avsiktliga manipulationer av den datorgenererade verkligheten. NÀr programmet anpassar sig till denna respons uppstÄr en interaktionsloop som exkluderar den medvetna anvÀndaren. Datorn interagerar med hjÀrnan, genom (den virtuella) verkligheten

    MÀnskliga hjÀrnor och virtuella verkligheter : Datorgenererad nÀrvaro i teori och praktik

    No full text
    A combined view of the human brain and computer-generated virtual realities is motivated by recent developments in cognitive neuroscience and human-computer interaction (HCI). The emergence of new theories of human brain function, together with an increasing use of realistic human-computer interaction, give reason to believe that a better understanding of the relationship between human brains and virtual realities is both possible and valuable. The concept of “presence”, described as the subjective feeling of being in a place that feels real, can serve as a cornerstone concept in the development of such an understanding, as computer-generated presence is tightly related to how human brains work in virtual realities. In this thesis, presence is related both to theoretical discussions rooted in theories of human brain function, and to measurements of brain activity during realistic interaction. The practical implications of such results are further developed by considering potential applications. This includes the development and evaluation of a prototype application, motivated by presented principles. The theoretical conception of presence in this thesis relies on general principles of brain function, and describes presence as a general cognitive function, not specifically related to virtual realities. Virtual reality (VR) is an excellent technology for investigating and taking advantage of all aspects of presence, but a more general interpretation allows the same principles to be applied to a wide range of applications. Functional magnetic resonance imaging (fMRI) was used to study the working human brain in VR. Such data can inform and constrain further discussion about presence. Using two different experimental designs we have investigated both the effect of basic aspects of VR interaction, as well as the neural correlates of disrupted presence in a naturalistic environment. Reality-based brain-computer interaction (RBBCI) is suggested as a concept for summarizing the motivations for, and the context of, applications building on an understanding of human brains in virtual realities. The RBBCI prototype application we developed did not achieve the set goals, but much remains to be investigated and lessons from our evaluation point to possible ways forward. A developed use of methods and techniques from computer gaming is of particular interest.Ett kombinerat perspektiv pĂ„ den mĂ€nskliga hjĂ€rnan och datorgenererade virtuella verkligheter motiveras av den senaste utvecklingen inom kognitiv neurovetenskap och mĂ€nniska-datorinteraktion (MDI). FramvĂ€xten av nya teorier om den mĂ€nskliga hjĂ€rnan, tillsammans med en ökande anvĂ€ndning av realistisk mĂ€nniska-datorinteraktion, gör det troligt att en bĂ€ttre förstĂ„else för relationen mellan mĂ€nskliga hjĂ€rnor och virtuella verkligheter Ă€r bĂ„de möjlig och vĂ€rdefull. Begreppet "nĂ€rvaro", som i detta sammanhang beskrivs som den subjektiva kĂ€nslan av att vara pĂ„ en plats som kĂ€nns verklig, kan fungera som en hörnsten i utvecklingen av en sĂ„dan förstĂ„else, dĂ„ datorgenererad nĂ€rvaro Ă€r tĂ€tt kopplat till hur mĂ€nskliga hjĂ€rnor fungerar i virtuella verkligheter. I denna avhandling kopplas nĂ€rvaro bĂ„de till teoretiska diskussioner grundade i teorier om den mĂ€nskliga hjĂ€rnan, och till mĂ€tningar av hjĂ€rnans aktivitet under realistisk interaktion. De praktiska konsekvenserna av sĂ„dana resultat utvecklas vidare med en nĂ€rmare titt pĂ„ potentiella tillĂ€mpningar. Detta inkluderar utveckling och utvĂ€rdering av en prototypapplikation, motiverad av de presenterade principerna. Den teoretiska diskussionen av nĂ€rvaro i denna avhandling bygger pĂ„ allmĂ€nna principer för hjĂ€rnans funktion, och beskriver kĂ€nslan av nĂ€rvaro som en generell kognitiv funktion, inte specifikt relaterad till virtuella verkligheter. Virtuell verklighet (virtual reality, VR) Ă€r en utmĂ€rkt teknik för att undersöka och dra nytta av alla aspekter av nĂ€rvaro, men en mer allmĂ€n tolkning gör att samma principer kan tillĂ€mpas pĂ„ ett brett spektrum av applikationer. Funktionell hjĂ€rnavbildning (fMRI) anvĂ€ndes för att studera den arbetande mĂ€nskliga hjĂ€rnan i VR. SĂ„dant data kan informera och begrĂ€nsa en vidare diskussion av nĂ€rvaro. Med hjĂ€lp av tvĂ„ olika försöksdesigner har vi har undersökt bĂ„de effekten av grundlĂ€ggande aspekter av VR-interaktion, och neurala korrelat av störd nĂ€rvaro i en naturalistisk miljö. Verklighets-baserad hjĂ€rna-dator interaktion (reality-based brain-computer interaction, RBBCI) föreslĂ„s som ett begrepp för att sammanfatta motiv och kontext för applikationer som bygger pĂ„ en förstĂ„else av den mĂ€nskliga hjĂ€rnan i virtuella verkligheter. Den prototypapplikation vi utvecklade uppnĂ„dde inte de uppsatta mĂ„len, men mycket Ă„terstĂ„r att utforska och lĂ€rdomar frĂ„n vĂ„r utvĂ€rdering pekar pĂ„ möjliga vĂ€gar framĂ„t. En vidare anvĂ€ndning av metoder och tekniker frĂ„n dataspel Ă€r speciellt intressant

    Neurocognitive systems related to real-world prospective memory

    Get PDF
    Taken together, these findings show how brain systems complementary interact during real-world PM, and support a more complete model of PM that can be applied to naturalistic PM tasks and that we named PROspective MEmory DYnamic (PROMEDY) model because of its dynamics on both multi-phase iteration and the interactions of distinct neurocognitive networks

    D.: Activity Recognition using an Egocentric Perspective of Everyday Objects

    No full text
    Abstract. Recognizing activities based on an actor’s object manipulation is an important research approach within ubiquitous computing. We present an approach which complements object manipulation with an actor’s situational information by viewing the everyday objects used by the actor to perform his/her activities from an “egocentric perspective”. Two concepts, namely observable space and manipulable space, are introduced as part of a situative space model inspired by the situated action theory to capture the changes in the set of objects seen and in the set of objects touchable by an actor in recognizing activities. A detailed evaluation of our prototype activity recognition system in virtual-reality environment is presented as a “proof of concept”. We obtained a recognition precision of 89 % on the activity-level and 76 % on the action-level among 10 everyday home activities using our situative space model. Virtual reality was used as a test-bed in order to speed up the design process, compensate for the limitations with currently available sensing technologies and to compare the contributions of observable space, manipulable space an
    corecore