18 research outputs found

    On L_p-Solvability of Stochastic Integro-Differential Equations

    Get PDF
    A class of (possibly) degenerate stochastic integro-differential equations of parabolic type is considered, which includes the Zakai equation in nonlinear filtering for jump diffusions. Existence and uniqueness of the solutions are established in Bessel potential spaces

    Multilevel Picard approximation algorithm for semilinear partial integro-differential equations and its complexity analysis

    Full text link
    In this paper we introduce a multilevel Picard approximation algorithm for semilinear parabolic partial integro-differential equations (PIDEs). We prove that the numerical approximation scheme converges to the unique viscosity solution of the PIDE under consideration. To that end, we derive a Feynman-Kac representation for the unique viscosity solution of the semilinear PIDE, extending the classical Feynman-Kac representation for linear PIDEs. Furthermore, we show that the algorithm does not suffer from the curse of dimensionality, i.e. the computational complexity of the algorithm is bounded polynomially in the dimension dd and the prescribed reciprocal of the accuracy ε\varepsilon

    Multilevel Picard algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities

    Full text link
    In this paper we introduce a multilevel Picard approximation algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities whose coefficient functions do not need to be constant. We also provide a full convergence and complexity analysis of our algorithm. To obtain our main results, we consider a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula. We show that the PDE under consideration has a unique viscosity solution which coincides with the first component of the unique solution of the stochastic fixed-point equation. Moreover, the gradient of the unique viscosity solution of the PDE exists and coincides with the second component of the unique solution of the stochastic fixed-point equation. Furthermore, we also provide a numerical example in up to 300300 dimensions to demonstrate the practical applicability of our multilevel Picard algorithm

    Multilevel Picard approximations overcome the curse of dimensionality in the numerical approximation of general semilinear PDEs with gradient-dependent nonlinearities

    Full text link
    Neufeld and Wu (arXiv:2310.12545) developed a multilevel Picard (MLP) algorithm which can approximately solve general semilinear parabolic PDEs with gradient-dependent nonlinearities, allowing also for coefficient functions of the corresponding PDE to be non-constant. By introducing a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula and identifying the first and second component of the unique fixed-point of the SFPE with the unique viscosity solution of the PDE and its gradient, they proved convergence of their algorithm. However, it remained an open question whether the proposed MLP schema in arXiv:2310.12545 does not suffer from the curse of dimensionality. In this paper, we prove that the MLP algorithm in arXiv:2310.12545 indeed can overcome the curse of dimensionality, i.e. that its computational complexity only grows polynomially in the dimension dNd\in \mathbb{N} and the reciprocal of the accuracy ε\varepsilon, under some suitable assumptions on the nonlinear part of the corresponding PDE

    Deep ReLU neural networks overcome the curse of dimensionality when approximating semilinear partial integro-differential equations

    Full text link
    In this paper we consider PIDEs with gradient-independent Lipschitz continuous nonlinearities and prove that deep neural networks with ReLU activation function can approximate solutions of such semilinear PIDEs without curse of dimensionality in the sense that the required number of parameters in the deep neural networks increases at most polynomially in both the dimension d d of the corresponding PIDE and the reciprocal of the prescribed accuracy ϵ\epsilon
    corecore