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ON L,-SOLVABILITY OF STOCHASTIC INTEGRO-DIFFERENTIAL
EQUATIONS

ISTVAN GYONGY AND SIZHOU WU

ABSTRACT. A class of (possibly) degenerate stochastic integro-differential equations of par-
abolic type is considered, which includes the Zakai equation in nonlinear filtering for jump
diffusions. Existence and uniqueness of the solutions are established in Bessel potential
spaces.

1. INTRODUCTION

We consider the equation
dug(z) = (Aur(z) + fe(x)) dt + (Miue(x) + g7 (2)) dwy

+ /Z (ut— (7 + M2 (7)) — we— () + Y2 () ur— (2 + e 2 (7)) + he(z, 2)) T(dz, dt) (1.1)
for (t,z) € [0,T] x R% := Hy with initial condition
uo(x) = Y(x) for x € RY, (1.2)

on a filtered probability space (Q,F, P, (F;)t>0), carrying a sequence w = (w})%2; of inde-
pendent F;-Wiener processes and an F;-Poisson martingale measure 7(dz,dt) = n(dz,dt) —
u(dz) @ dt, where m(dz,dt) is an F-Poisson random measure with a o-finite characteristic
measure p(dz) on a measurable space (Z, Z) with a countably generated o-algebra Z. We
note that here, and later on, the summation convention is used with respect to repeated
(integer-valued) indices and multi-numbers.

In the above equation A; is an integro-differential operator of the form A; = £; + /\/t5 +
N" + R; with a “zero-order” linear operator R; specified later, a second order differential
operator N

Ly = a) (x)Dij + by(z)D; + cr(w),
and integral operators ./\/t5 and N} defined by

Nip(a) = /Zso(iv +61,:(2) = () = &2 (2)Vip() + X5 (2) (p(2 + &2 (2)) — () )v(dz),

Nt%(w)=/Zw(w+m,z(fv))—s@(w)—m,z(w)VsO(x)+A2z(x)(90(w+m,z(w))—w(w))u(dz) (1.3)

for a suitable class of real-valued functions ¢ on Rd‘ for each t € [0,T], where v(dz) is a fixed
o-finite measure on (Z, Z). The coefficients a*, b and ¢ are real functions on 2 x Hyp for
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2 I. GYONGY AND S. WU

i,j =1,2,...,d, and A5, A" and ~ are real functions on Q x Hy x Z, and n = (1} .(x)) and
¢ = (& .(x)) are R%-valued functions of (w, t, 2, z) € Qx Hpx Z. Under “zero-order operators”
we mean bounded linear operators R mapping the Sobolev spaces Wlff into themselves for

some k > 0. For each integer r > 1 the operator M7 is a first order differential operator of
the form

i =i (x)D; + 5] (x).

The coefficients ¢ and A" are real functions on Q x Hyp for i, = 1,2,...,d and integers
r > 1. The free terms f and ¢" are real functions defined on €2 x Hr for every r > 1, and h
is a real function defined on Q x Hy x Z. The stochastic differentials in equation (1.1) are
understood in Itd’s sense, see the definition of a solution in the next section.

We are interested in the solvability of the above problem in L,-spaces. We note that
equation (1.1) may degenerate, i.e., the pair of linear operators (£, M) satisfies only the
stochastic parabolicity condition, Assumption 2.1 below, and the operators N¢ and N may
also degenerate. Our main result, Theorem 2.1 states that under the stochastic parabolicity
condition on the operators (£, M), N¢, N, and appropriate regularity conditions on their
coefficients and on the initial and free data, the Cauchy problem (1.1)-(1.2) has a unique
generalised solution u = (uz)icpo,r) for any given T. Moreover, this theorem describes the
temporal and spatial regularity of u in terms of Bessel potential spaces H,}, and presents also
a supremum estimate in time. The uniqueness of the solution is proved by an application of
a theorem on It6’s formula from [17], which generalises a theorem of Krylov in [24] to the
case of jump processes. The existence of a generalised solution is proved in several steps.
First we obtain a priori estimates in Sobolev spaces W' for integers n € [0, m], where m is
a parameter measuring the spatial smoothness of the coefficients and the data in (1.1)-(1.2).
These estimates allow us to construct a generalised solution by approximating (1.1)-(1.2)
with non-degenerate equations with smooth coefficients and compactly supported smooth
data in z € R% Thus we see that a solution operator, mapping the initial and free data
into the solution of (1.1)-(1.2), exists and it is a bounded linear operator in appropriate
L,-spaces. Hence by interpolation we get our a priori estimates in Bessel potential spaces
H}} for any given p > 2 and real number n € [0,m]. We obtain essential supremum estimates
in time for the solution from integral estimates, by using the simple fact that the essential
supremum of Lebesgue functions over an interval [0, 7] is the limit of their L,(]0,7])-norm
as r — 00. Hence we get the temporal regularity of the solution formulated in our main
theorem by using Theorem 2.2 on It6’s formula in [17], an extension of Lemma 5.3 in [9] and
a well-known interpolation inequality, Theorem 4.1(v) below.

In the literature there are many results on stochastic integral equations with unbounded
operators, driven by jump processes and martingale measures. A general existence and
uniqueness theorem for stochastic evolution equations with nonlinear operators satisfying
stochastic coercivity and monotonicity conditions is proved in [15], which generalises some
results in [25] and [32] to stochastic evolution equations driven by semimartingales and ran-
dom measures. Further generalisations are obtained and the asymptotic behaviour of the
solutions are investigated in [28]. For a monograph on stochastic evolution equations driven
by Lévy noise we refer to [33].

The main theorem in [15] implies the existence of a unique generalised solution to (1.1)-
(1.2) in Lo-spaces when instead of the stochastic parabolicity condition (2.1) in Assumption
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2.1 below, the strong stochastic parabolicity condition,

d oo d

Z Z(aij - %b"bjr)zizj > )\Z |22 for all z = (24,22, ..., 2%) e RY

i,j=1r=1 i=1
with a constant A > 0 is assumed on (£, M). Under the weaker condition of stochas-
tic parabolicity the solvability of (1.1)-(1.2) in Lo-spaces is investigated and existence and
uniqueness theorems are presented in [8] and [27]. The first result on solvability in L,-spaces
for the stochastic PDE problem (1.1)-(1.2) with £ =7 = 0 and h = 0 was obtained in [26],
and was improved in [16]. However, there is a gap in the proof of the crucial a priori estimate
n [26]. This gap is filled in and more general results on solvability in L,-spaces for systems
of stochastic PDEs driven by Wiener processes are presented in [12]. As far as we know The-
orem 2.1 below is the first result on solvability in L,-spaces of stochastic integro-differential
equations (SIDEs) without any non-degeneracy conditions. It generalises the main result of
[9] on deterministic integro-differential equations to SIDEs. Our motivation to study equa-
tion (1.1) comes from nonlinear filtering of jump-diffusion processes, and we want to apply
Theorem 2.1 to filtering problems in a continuation of the present paper.

We note that under non-degeneracy conditions SIDEs have been investigated with various
generalities in the literature, and very nice results on their solvability in L,-spaces have
recently been obtained. In particular, Ly,-theories for such equations have been developed
in [20], [21], [29], [30] and [31], which extend some results of the L,-theory of Krylov [22]
to certain classes of equations with nonlocal operators. See also [7] for an Ly-theory for
stochastic PDEs driven by Lévy processes, [36] for an existence and uniqueness theorem
for stochastic quasi-geostrophic equations driven by Poisson martingale measures, and [6],
[10] and [35] for L, theory of deterministic equations with nonlocal operators. Nonlinear
filtering problems and the related equations describing the conditional distributions have
been extensively studied in the literature. For results in the case of jump-diffusion models
see, for example, [2], [4], [11] and [14].

In conclusion, we introduce some notions and notations used throughout this paper. All

random elements are given on the filtered probability space (2, F, P, (Ft)i>0). We assume
that F is P-complete, the filtration (F;);>o is right-continuous, and Fy contains all P-zero
sets of F. The o-algebra of the predictable subsets of € x [0,00) is denoted by P. For
notations, notions and results concerning Lévy processes, Poisson random measures and
stochastic integrals we refer to [1], [3] and [19].
For vectors v = (v*) and w = (w') in R? we use the notation vw = > 1", v'w’ and
[v|> = 3, |v¥|?. For real-valued Lebesgue measurable functions f and g defined on RY the
notation (f,g) means the integral of the product fg over R? with respect to the Lebesgue
measure on R, A finite list o = ajao, ..., o, of numbers a; € {1,2, ...,d} is called a multi-
number of length || := n, and the notation

Dy =Dy, Dg,...D,,
is used for integers n > 1, where
0

-V
ox'

is the generalised derivative of a real-valued function v with respect to z;, i = 1,2,...,d.
We use also the multi-number € of length 0 such that D, means the identity operator. For

DZ"U =
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an integer n > 0 and functions v on R whose generalised derivatives up to order n are
functions, we use the notation D™v for the collection {D,v : || = n}, and define

|D™0> = Y |Dav]*.

lal=n

For differentiable functions v = (v!, ...,vd) : R — R? the notation Dv means the Jacobian

matrix whose j-th entry in the i-th row is D;jv’. When we talk about “derivatives up to
order n” of a function for some nonnegative integer n, then we always include the zero-order
derivative, i.e. the function itself. The space of smooth functions ¢ = ¢(z) with compact
support on the d-dimensional Euclidean space R is denoted by Cge.

For p,q > 1 we denote by L, = L4(Z,R) the Banach spaces of R-valued Z-measurable
functions h = h(z) of z € Z such that

i, = [ I o) < o
The notation £, , means the space £, N L, with the norm

|U’£’p,q = maX(|U|Lp7 ’U|Lq) for v € Ep N Eq.

The space of sequences v = (v, 12, ...) of real numbers v* with finite norm

> 1/2
why, = (3" W)Y
k=1

is denoted by Ia.

The Borel o-algebra of a separable Banach space V' is denoted by B(V'), and for p > 0 the
notations L,([0,T],V) and L,(R% V) are used for the space of V-valued Borel-measurable
functions f on [0,7] and g on RY, respectively, such that |f|}, and |g[f, have finite Lebesgue

integral over [0,7] and RY, respectively. For p > 1 and f € L,(R% V) we use the notation
|flz,, defined by

112, = [ 1@ do < o

In the sequel, V will be R, ls or £,,. For integer n > 0 the space of functions from
L,(R% V), whose generalised derivatives up to order n are also in L,(R% V), is denoted by
Wy = WHR? V) with the norm

|f|W; = Z |Daf|Lp-
la|<n
By definition W(R?, V) = L,(R%, V).
For m € R and p € (1,00) we use the notation H)" = H;”(Rd; V') for the Bessel potential

space with exponent p and order m, defined as the space of V-valued generalised functions
¢ on R such that

1-A)"2peL, and |p|gp = |(1—A)"2¢|L, < oo,
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where A = 2?21 Di2. Moreover, we use HJ)' to denote the space of P-measurable functions
from Q x [0, 7] to H}* such that

T
’f\pngZE/O ]ft];{;)ndt<oo.

We will often omit the target space V' in the notations Wy(V), Hy*(V), and H}'(V') for
convenience if V = R, and we use L, to denote Hg. When V = L, , we use W', H), and

PO
H3?, to denote W' (Lyq), H)'(Lyq) and H'(Ly ) respectively, and we use L, 4 to denote
HO .
P.a

Remark 1.1. If V' is a UMD space, see for example [18] for the definition of UMD spaces,
then by Theorem 5.6.11 in [18] for p > 1 and integers n > 1 we have W((V) = HJ}(V) with
equivalent norms. Clearly, £, , is a UMD space for p,q € (1, 00), which implies W, = HJ,
for non-negative integers n and p,q € (1, 00).

2. FORMULATION OF THE RESULTS

To formulate our assumptions we fix a constant K, a non-negative real number m, an
exponent p € [2,00), and non-negative Z-measurable real-valued functions 77 and £ on Z
such that they are bounded by K and

K,% = /Z 17(2)|? p(dz) < oo Kgg = /Z 1€(2)|? v(dz) < .

We denote by [m] the smallest integer which is greater than or equal to m, and [m] the
largest integer which is less than or equal to m.

Assumption 2.1. The derivatives in z € R? of ¢”, b’ and ¢ up to order max{[m],2},
max{[m], 1} and [m], respectively, are P@B (Rd)—measurable functions on Q2 x Hy, bounded
by K for all i,j = 1,2,...d. The functions o' = (¢*")22, and § = (8")22; and their derivatives

r=1
up to order [m]+1 are ly-valued P ® B(R?)-measurable functions, bounded by K. Moreover
a' =a’ for all i,j =1,...d, and for P ® dt ® dz-almost all (w,t,z) € Q x Hp
al ()22 >0 forall z=(z',.., 2% eRY, (2.1)
where - - o
a’ =2a"” —a"a’".
Assumption 2.2. The mapping £ = (£°) is an R%valued P ® B(RY) ® Z-measurable function

on Q x [0,T] x R? x Z. Tts derivatives in € R? up to order max{[m],3} exist and are
continuous in = € R? such that

ID*¢| <€ k=0,1,2,..,max{[m],3} :=m
for all (w,t,z,2z) € Q x Hp x Z. Moreover,
K™t < |det(I + 0D& ()|

for all (w,t,z,2,0) € Qx Hp x Z x [0, 1], where I is the d x d identity matrix, and D¢ denotes
the Jacobian matrix of ¢ in = € R,

Assumption 2.3. The function n = (1°) maps Q x [0,7] x R? x Z into R? such that
Assumption 2.2 holds with 7 and 7 in place of £ and &, respectively.
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Remark 2.1. Assumptions 2.2 and 2.3 imply that for each (w,t,z,0) € Q x [0,T] x Z x [0, 1]
the mappings

Toe(x) ==+ 0& .(x) and Tpy(z) := x + O () (2.2)
are C*-diffeomorphisms on R? with k = m. Note that a C*-diffeomorphism p for an integer
k > 1 means a one-to-one mapping from R% onto R? such that p and its inverse p~! are
continuously differentiable up to order k.

Assumption 2.4. The functions A\¢, \7 and v are real-valued P ® B(R?) ® Z-measurable
function on Q x [0, 7] x R? x Z. The derivatives in z € R? of ¢, A7 up to order max{[m],1}
exist and are continuous in # € R such that

IDFX| < K€, |DFA| < K7 k=0,1,2,...,max{[m],1}.

The derivatives in 2 € R? of 5 := v — A7 up to order [m] exist and are continuous in = € R?
such that
ID'Al < Kii* 1=10,1,2,..., [m].

Assumption 2.5. The operator R; is a linear mapping from L,(R?) into L,(R?) for every
t €10,7] and w € Q, such that for every ¢ € C§° the function Ry is P-measurable and

Reelwy < Klplwp forallw e Q, ¢ €[0,T] and n =0, [m].

Assumption 2.6. The free data f = (fi)icjo,7), 9 = (9 )iejo,r) and b = (h¢)secjo,r) are P-
measurable processes with values in H,", H;""(I%) and H}5" ''= H"Y(L, ), respectively,
such that almost surely K} ,,(T) < oo, where

t
P - P P P P
Icp,m(t) T /0 ‘fS’HF + |gS H;n+1(12) + ‘hS’H;iLékl + 1p>2|hS‘H;,l;2 d87 t S T.
The initial value ¢ is an Fo-measurable random variable with values in H}".

Remark 2.2. By Taylor’s formula we have

1
v(z +n(z)) —v(z) —n(z)Vo(r) = /0 0" () (vn(z + On(2)) — v (x)) df

1 1
- /0 () Di(v(a + On()) — v()) dO — /0 O (@)l () (e + O ()) o,

where to ease notation we omit the arguments ¢ and z, and write v; instead of Dyv for
functions v. Due to Assumption 2.3 these equations extend to v € VVp1 for p > 2 as well.
Hence after changing the order of integrals, by integration by parts we obtain

L, [ vl @) = o(@) = n()Vela))p(o) dz do = ~(Tfo, Dis) + (T30. )

for ¢ € C§°, with
1
TE# (@) :/O /an(v(rgn(x)) ~ (@) p(dz) 8, k=1,2,....d, (2.3)
1
TOty(x) = - /O /Z (32 k(e Crg(a)) = (o)) + O o o)} u(d2) 0, (2
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where for the sake of short notation the arguments t,z of  and of ny = Dgn have been
omitted, and 7y, is defined in (2.2). Operators Jgk and Jgo are defined as jnk and 7 in (2.3)
and (2.4) but with ¢ everywhere in place of 7.

Definition 2.1. An Lj,-valued cadlag Fi-adapted process u = (ut)ieo,r) is a generalised
solution to equation (1.1)-(1.2) with initial value ug = 1, if u; € W, for P @ dt-almost every
(w,t) € Q x [0,T], such that almost surely u € Ly([0,T],W,) and

t

t
(u,0) = (1, 0) + /0 (Astiar @) + (for ) ds + /0 (Ml + g ) du

b [ )~ st ) 4 () 0) 7, )

for all for each ¢ GOC'gf and t € [0,T)], where 7, . = z + 1, .(z), z € RY,
(Asus, @) = —(a Djus, Dip) + (B Diis + stis, ) + (Rt )

—(Jus, Dig) + (T us, ) = (Tyus, Dip) + (Tyus, #)

/ / (ts(w + € 2(2)) — s (2)) () d v(d2)
/ / ) (152 + () — 1y () ) () e pa(d2) (2.5)

with b% = bl — Djasj for all (s,w) € [0,7] x Q, and the stochastic integrals are It6 integrals.
The next theorem is the main result of this paper.

Theorem 2.1. If Assumptions 2.1 through 2.6 hold with m > 0, then there is at most one
generalised solution to (1.1). If Assumptions 2.1 through 2.6 hold with m > 1, then there
is a unique generalised solution u = (ut)icpo,r], which is a weakly cadlag H,"-valued adapted
process, and it is a strongly cadlag Hy-valued process for any s € [0,m). Moreover,

E sup |w? ; dt < N (E]w\q .+ EIC&S(T)) for s € [0,m], q € (0,p] (2.6)
t€[0,T]

with a constant N = N(d,m,p,q,T, K, K¢, K5).
3. PRELIMINARIES
For vectors v = (v, ....,v%) € R? we define the operators 7%, I" and .J* by
TPo(x) = p(z +v), I"p(x)=o(x+v) - @),
JP¢(x) = p(x 4+ v) — () — v'Dip(x) for z € RY, (3.1)
acting on functions ¢ and ¢ defined on R? such that the generalised derivative D;¢ exist. If
v = v(x) is a function of 2 € R? then the notation 7%, IV and .J” mean the operators defined

by (3.1) with v(x) in place v. For example, J¢ and J” mean for each w € Q, ¢t € [0,7] and
z € Z the operators defined on differentiable functions ¢ on R? by

Joo(x) = p(z +£(2) — () — 7' (z) Div(z),
Jo(x) = p(z +n(z)) — p(x) — n'(x)Div(z), xeR?
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for each fixed variable (w,t,z) suppressed in this notation. We will often use the Taylor
formulas

1
I’p(x) = /0 oi(z + Ov)v' df (3.2)
and
1 . .
JUo(x) = /0 (1 —8)¢ij(z + Ov)v'v’ do (3.3)

with ¢; := D;p and ¢;; := D;D;¢, which hold for every = ¢ R? when ¢ and ¢ are contin-
uous functions on R% with continuous derivatives up to first order and up to second order,
respectively. These equations hold for dz-almost every x € R? when ¢ € VVp1 and ¢ € WpQ.
We fix a non-negative smooth function k& = k() with compact support on R? such that
k(z) = 0 for |z| > 1, k(—z) = k(z) for x € R?, and [p4 k(z)dz = 1. For € > 0 and locally
integrable functions v of z € R? we use the notation v(®) for the mollification of v, defined by

v () = SFu(z) = ¢ /]Rd v(y)k((x —y)/e)dy, xR (3.4)

Note that if v = v(z) is a locally Bochner integrable function on R?, with respect to the
Lebesgue measure, which takes values in a separable Banach space, then the mollification of
v is defined as in (3.4) in the sense of Bochner integral.

The following lemmas are taken from [9] and for their proof we refer to [9].

Lemma 3.1. Let Assumption 2.8 hold. Then for every (w,t,z) € Q x [0,T] x Z the op-
erators T", I and J" are bounded linear operators from sz to W;’C, from WSH to Wf
and from W]f” to W]f respectively, for k = 0,1,...,m, such that T"p, I"f and J"g are
P ® Z-measurable Wf—valued functions of (w,t,z), and

Telws < Nlehws: |7 flws < Na@ lyses [Talwg < N7 E)lalyes
forallp € Wf, fe Wzﬂﬁ'l and g € W§+2, where N is a constant only depending on K, m,d, p.
Lemma 3.2. Let p be a C*(RY)-diffeomorphism for some k > 1, such that

M <|det Dp| and |D'p| <N  forl=1,2,...k (3.5)

for some constants M > 0 and N > 0. Then there are positive constants M' = M'(N,d) and
N’ = N'(N,M,d, k) such that (3.5) holds with g := p~*, the inverse of p, in place of p, with
M'" and N’ in place of M and N, respectively.

The following lemma is a slight generalisation of Lemma 3.4 in [9].

Lemma 3.3. Let p be a C*-diffeomorphism for k > 2, such that (3.5) holds for some
positive constants M and N. Then there is a positive constant eg = eo(M, N, d) such that
e i =p+ (1—10)p) is a CF-diffeomorphism for every e € (0,£0) and ¥ € [0,1], and (3.5)
remains valid for pey in place of p, with M" = M/2 in place of M. Moreover, ) is a
C>°-diffeomorphism for e € (0,ep).
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Proof. We show first that | det Dp, | is separated away from zero for sufficiently small € > 0.
To this end observe that for bounded Lipschitz functions v = (v!,v?, ...,vd) on R?% and

Ve = Y0+ (1 — 9w we have

d
ot — nglvéﬁ] < Z K&yt — v;ﬂ\ < K% 'Le forany e >0 and 9 € [0,1],
i=1
where L is the Lipschitz constant of v and K is a bound for |v|. Using this observation and
taking into account that D;p' is bounded by N and it is Lipschitz continuous with a Lipschitz
constant not larger than N, we get

|det Dp — det Dp. 5| < d! N%.
Thus setting &’ = M/(2d! N?), for € € (0,€’) and 9 € [0, 1] we have
|det Dp, y| > |det Dp| — | det Dp — det Dp, y]

> |det Dp|/2 > M/2.
Clearly, pcy is a C* function. Hence by the implicit function theorem pe is a local Ck-
diffeomorphism for ¢ € (0,¢’') and ¥ € [0,1]. We prove now that p.» is a global Ck-
diffeomorphism for sufficiently small ¢. Since by the previous lemma |Dp~!| < N’, we
have

|z =yl <N'|p(x) — p(y)]
SNlpew(@) = pen (W) + N'lp(x) = pew(@) + pew(y) — p(v)
for all 2,57 € R? and £ > 0 and ¥ € [0, 1]. Observe that

() — peo(@) + pesly) — ply)| < / 1p(z) — pla — eu) + ply — u) — p(y)|(w) du

< / / elul|Vp(x — Oeu) — Vp(y — Oeu)|k(u) df du
R Jo

<eN|z —y| |ulk(u) du < eNl|z —y|.
lu|<1
Thus |z —y| < N'|peg(x) — pew(y)| +eN'N|x — y|. Therefore setting e” = 1/(2NN’), for all
e € (0,¢") and ¥ € [0,1] we have

|z —y| < 2N'|pey(x) — pew(y)| for all z,y € RY,

which implies lim|g|_,q |pe,0(2)| = o0, i.e., under p.y the pre-image of any compact set is a
compact set for each e € (0,£”) and 9 € [0,1]. A continuous function with this property is
called a proper function, and by Theorem 1 in [13] a local C''- diffeomorphism from R? into
R? is a global diffeomorphism if and only if it is a proper function. Thus we have proved
that p. g is a global C*-diffeomorphism for & € (0,£0) and ¥ € [0, 1], where g9 = min(e’,£").
Clearly, pco = pt) is a C function and hence it is a C*°-diffeomorphism for every ¢ € (0,e0)-

Now we can complete the proof of the lemma by noting that since Djp(‘f) = (Dj,o)(a), the
condition |D’p| < N implies |Dip. 3| < N for any € > 0 and 9 € [0, 1]. O
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For fixed € > 0 and ¥ € [0,1] let p. y denote any of the functions

peo(@) i= 2+ 9. (2) + (1= O (2),  pes(@) i=x+9&.(2) + (1 —9)E (@) 2 eRY

for each (w,t,z) € Q x [0,T] x Z, and assume that Assumptions 2.2 and 2.3 hold. Then by
the inverse function theorem p is a local C'-diffeomorphism for each ¢, # and z. Since

‘nt,z(x)‘ < 77(2> < 00, ’gt,z(xﬂ < é(z) < 00,

we have lim||_,q |pe ()] = oo. Hence p. y is a global C!-diffeomorphism on R¢, for £ > 0,
¥ € [0,1], for each t € [0,T], z € Z and 0 € [0,1], by Theorem 1 in [13]. Note that by
the formula on the derivative of inverse functions, a C'-diffeomorphism and its inverse have
continuous derivatives up to the same order. Thus Lemmas 3.2 and 3.3 imply the following
statement, which is a slight generalisation of Corollary 3.6 in [9].

Corollary 3.4. Let Assumptions 2.2 and 2.3 hold. Then there is a positive constant g =
eo(K,d) such that p = p.y is a C*-diffeomorphism on R? for k = m, for any e € (0,&),
¥ € [0,1] and (w,t,z) € 2 x [0,T] x Z. Moreover, for some constants M = M(K,d,m) and
N = (K,d,m)

M < min(|detDpl, [det(Dp) ~|), max(|D*p|, [DFp~|) < N (3.6)

for any € € (0,e9), ¥ € [0,1], (w,t,2) € @ x[0,T] x Z and for k =1,2,...,m. Furthermore,
if ¥ = 0 then p is a C*°-diffeomorphism for each € € (0,ep), (w,t,2) € Q@ x [0,T] x Z, and
for each integer m > 1 there are constants M = M(K,d,m) and N = N(K,d,m) such the
estimates in (3.6) hold for all e € (0,¢), (w,t,2) € Ax [0,T] X Z and k =1,2,...,m.

Lemma 3.5. Let V' be a separable Banach space, and let f = f(x) be a V-valued function
of z € R? such that f € L,(V) = L,(R%, V) for some p > 1. Then we have

‘f(g)’Lp(V) <|[flL,v) and lim F&) — flz,ovy = 0.

Proof. This lemma is well-known. Its proof can be found, e.g., in [17], see Lemma 4.4 therein.
For the convenience of the readers, we present the proof below. By the properties of Bochner
integrals, Jensen’s inequality and Fubini’s theorem

£y = [ fkte =y

< [ [k = ) dyde = 111

Since V' is separable, it has a countable dense subset V. Denote by H C L,(V') the space of
functions h of the form

P
dzx
1%

h(z) = vipi(x)

i=1
for some integer k > 1, v; € Vj and continuous real functions ¢; on R? with compact support.
Then for such an h we have

k
K — bl <310l — ilz,luily =0 ase— 0,
=1
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where L, = L,(R% R). For f € L,(V) and h € H we have

’f—f(s)’Lp(V) < |f_h‘Lp(V)+‘h_h(5)‘Lp(V)‘H(f_h)(a)’Lp(V) < 2’f—h’Lp(v)+’h—h(a)’Lp(V)
Letting here ¢ — 0 for each f € L,(V) we obtain
limsup |f — £, 1) < 2f —hlp, ) forall he
e—0

Since H is dense in Ly(V'), we can choose h € H to make |f — h|y () arbitrarily small, which
proves lim._,q | f — f(f)\Lp(V) =0. O

Recall that L,(L, N Ly,) denotes the Ly-space of Ly, N Lg,-valued functions on R? with
respect to the Lebesgue measure on R?. Since (Z, Z, 1) is a o-finite separable measure space,
Ly, N Ly, is a separable Banach space for any ¢1,¢2 € [1,00). Hence, by Lemma 3.6 in [17]
for each v € L,(Ly N Ly,), p > 1 there is a B(R?) ® Z-measurable function v = v(z, 2)
such that for every € R? we have v(z, z) = o(z, z) for p-almost every z € Z. Therefore if
v € Ly(Ly, NLy,) for some p > 1, then we may assume that v is a B(R?) ® Z-measurable real-
valued function. Moreover, we will often use the following characterisation of W' (Lg, N Ly,).

Lemma 3.6. Let v € Ly(L,NL,) for some p,q € (1,00), and let o be a multi-index. Then
the following statements hold.
(i) If va, the L, N Ly-valued generalised Dy -derivative, belongs to L,(L, N L), then for
p-almost every z € Z the function v, (-, 2) belongs to L,(RY,R) and it is the generalised
D, -derivative of v(-, z).
(ii) If va (-, 2), the generalised D, -derivative of the function v(-,z), belongs to L,(R%,R) for
w-almost every z € Z such that

p/r
L ([ 1oatw2)r ntaz)" do<oc forr=p.a (3.7)
Rd Jz
then vy belongs to L,(L, N Ly), and it is the L, N Lq-valued generalised D, -derivative
of v.
Proof. (i) Let 7, denote the £, N L,-valued generalised D,-derivative of v. Then

[ fa@)e@)de = (<11 [ v(@)Dap(a) da

Rd
for every ¢ € C§°, where the integrals are understood as Bochner integrals of £, N Lg-valued
functions. Hence

[ [ et awere@pzae = 0! [ [ o eea@pn) do

for all ¢ € C§° and bounded Z-measurable functions ¢ supported on sets of finite y-measure.
We can use Fubini’s theorem to get

//Rd (z,2)p(x) dz Y (2)pu(dz (_1)a|/Z/1Rd v(x, 2)pa(x) do 1 (2) p(dz).

Thus for each ¢ € C§° we have

/R tale, 2)pl@)dr = ()P [ ofa, 2)pa(a) de (3.8)

R4
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for p-almost every z € Z. Consequently, for p-almost every z € Z equation (3.8) holds for all
¢ € ® for a separable dense set ® C C§° in L, /(p_l)(Rd,R). Notice that for p-almost every
z € Z the functions 0,(+, 2) and v(-, 2) belong to L,(R% R). Hence there is a set S C Z of
full p-measure such that for z € S equation (3.8) holds for all ¢ € C§°, which proves that
for z € S the function v,4(+, z) is the generalised D,-derivative of v(+, z). To prove (ii) notice
that if for p-almost every z € Z the function v, (-, z) belongs to L,(R% R) and it is the D,
generalised derivative of the function v(-, z), then for p-almost every z € Z we have

/ Va2, 2)p(z) dz = (1)1 | v(z, 2)p(x) da

R? R?

for every ¢ € C§°. Using condition (3.7) and that v € L,(L£,N L), it is easy to check that, as
functions of z, both sides of the above equation are functions in £, N L, and hence that these

integrals define the same functions as the corresponding £, N £4-valued Bochner integrals.
This proves that v, is the £, N L4-valued generalised D,-derivative of v. 0

Lemma 3.7. Let Assumptions 2.8 hold with m = 0. Then the following statements hold.

(i) Let ¢ be a F @ B([0,T] x RY) ® Z-measurable function on Q x Hy x Z such that it is
continuously differentiable in x € R% and

IC| 4+ |D¢| < Kip for all (w,t,x,2) € Q2 x Hp X Z. (3.9)
Then there is a constant N = N(K,d) such that for o € W}

A= y C(t,x, 2)IM(x) de < Ni2(2) |plr, for all (w,t,2) € A x [0,T] x Z. (3.10)

(ii) There is a constant N = N(K,d) such that for all ¢ € W
Bim [ 6(z)ds < NP ()0l (3.11)

(iii) There is a constant N = N(K,d) such that for all ¢ € W}
Ci= [ 10(a)ds < N0()ol (3.12)

Proof. The proof of (3.11) and (3.12) is given in [8] and [9]. For the convenience of the
reader we prove each of the above estimates here. We may assume that ¢, ¢ € C§°. For each
(w,t,2,0) € 2x[0,T] x Z x[0,1] let 79771 denote the inverse of the function x — x + 0 .(z).
Using (3.2) and (3.3) by change of variables we have

A= /0 [ Vele)ximo(e)dzds, B = /0 /R (1= 0)Dyo(a)el (o) duds (313)

1
C:/ Vo(z)ke . 0(x) dr db (3.14)
0 JRd
with
X(x) := ((n) (75, (2)|detDry, ()], 07 (x) == ("1 ) (75, (x))|det Dry, ! ()]

and
k(z) = 77(7'9_771(.’E)>‘detDT9_771(J})‘.
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Due to (3.9) and Assumption 2.3 we have a constant N = N (K, d) such that
[DXt6.-(2)| < Ni*(2), [ Dijor, 4(x)] < Ni*(2) and  [Drgp.(x)| < Nij(2)

for all (w,z,t,2,0) € Q xR x [0,T] x Z x [0,1]. Thus from (3.13) and (3.14) by integration
by parts we get (3.10), (3.11) and (3.12). O

Lemma 3.8. Let Assumption 2.3 hold with an integer m > 0. Then for allw € Q, t € [0,T]
and r > 1 we have

Hiph)i= [ | [ 1otah(o2) dalutd) < Nlle, o Bhwzce, e 315)

K(o0)i= [ | [ The(@ig(e.2) delud) < Mol .y lolwziey  316)
for o, ¢ € Lyy—1) and h € W2(Ly2) and g € W2(Ly1) with a constant N = N(r,d, K, K;).
Proof. First assume ¢, ¢ € C§°, and notice that

1 2
H(p,h) < ZHU) and K(¢,h) < ZK(j)
5=0

§=0
with
H(O):/ )/ J%hdm}u(dz), H“):/‘ Dz-sonihdx\u(d@
A Rd 7Z Rd

and

KO = [| [ 7ogaslucas. KO = [ ]| Diorigas|uaz)
K® :/Z‘/Rd qﬁgdac‘u(dz).

By Fubini’s theorem and Holder’s inequality

KO < [ lollate e do < 1611, lols, oo (317)

By Taylor’s formula, Fubini’s theorem, change of variables, integration by parts and using
Assumption 2.3 we get

1
HO < [ [ | [ =0y hde u(d) ds
0 Z R4

1
<N /0 /Z /R PENel Y sl (@), 2) de p(dz) do

1B1<2
with N = N(d, K), where 7y, is defined by (2.2), and Te_nl is its inverse. Hence by Holder’s
inequality, change of variables, Fubini’s theorem and using || < K we obtain

HO < Nlglr, ., |hlwzc,), (3.18)

and in the same way
KO < Nglr,,,_, lglwze.) (3.19)
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with a constant N = N (K, d,r, Ky). By integration by parts, using Assumption 2.3, Cauchy-
Schwarz and Holder inequalities we get

/‘/RﬁD (n'h(z, 2) dw‘ﬂ (dz) // lel(2) Y |hs(x, 2)| do p(d)

18l<1
<Ky [ 16 Y ho(e)les do < Nl oy Iohwace, o (3.20)
181<1
and in the same way
KU < NglL,, o l9lwien

with a constant N = N(K,d,r, Kz). Combining this with (3.17) through (3.20), we get
(3.15) and (3.16) for ¢, ¢ € C§°. Assume now that ¢, ¢ € L, /,_1) and pu(Z) < oc. It is easy
to see that by Holder inequality we have

H(p,h) < ClolL, i |blL.c,) and K(¢.g) <Cl9lL, 9]0,

for ¢,¢ € L,/p—1y and h,g € L,(L;) with a constant C' = C(K, Ky, d,r,u(Z)), which
implies that estimates (3.15) and (3.16) for ¢,¢ € C§° can be extended by continuity to
¢, ¢ € Ly /-1 for finite measures p. In the general case of a o-finite measure i, there exist
Zn € Z,n=1,2,.., such that pu(Z,) < oo and U2 Z, = Z. We define measures pu, for
integers n > 1 such that du, = 1z, du, where 1z, is the indicator for Z,,. By the previous
argument, for ¢, ¢ € L, /,_1) we have

/z | /Rd I"p(z)h(w, 2) da| pa(d2) < Nlglr, ) [hlwz(c, )
and
/ / T"¢(x)g(x, 2) dx| pn(dz) < N‘¢|Lr/(r71>‘g‘W3(cm)

with a constant N = N(r,d, K, K). Then an application of Fatou’s lemma finishes the proof
of this lemma. g

Next we present two important It6’s formulas from [17] for the p-th power of L,-norm of
L,-valued stochastic processes.

Lemma 3.9. Let (u})icor be a progressively measurable Ly-valued process such that there
exist f* € Ly, " = (¢"")2, € Ly, h* € Ly 2, and an Ly-valued Fo-measurable random variable
Y for each i =1,2,...,M for some integer M, such that for every ¢ € C§°

i) = o)+ [ hpdst [raag+ [ [wontnd) @

for P ® dt-almost every (w,t) € Q x [0,T] and all i = 1,2,..., M. Then there are Ly-valued
adapted cadlag processes i = (u', u?, ..., u™M) such that equation (3.21), with @’ in place of u’,
holds for every i = 1,2,..., M and each ¢ € C§° almost surely for all t € [0,T]. Moreover,

u' = 4’ for P ® dt-almost every (w,t) € Q x [0,T], and

t
nly, =101, + [ [ il dedu
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M
/ / (QlalP=2a £ + (p — 2)|asP~ gt B + a2 S 6 [R) du ds

i=1
+p/ // us_|P2al_h' dx7(dz, ds)
Rd
+/ // (|ts— + hs|P — |as— [P — plis—[P~?a’_hL) dz w(dz, ds)
0 JZJRd

holds almost surely for all t € [0,T], where the definition 0/0 := 0 is used where 0/0 occurs.

Lemma 3.10. Let u = (ut)ieo,r be a progressively measurable Wpl—valued process such that
the following conditions hold:
T
E/ |ut[py1 dt < 00
0 P

(i)
(ii) there exist f € L, for o € {0,1,...,d}, g € Ly, h € Lp2, and an Ly-valued Fo-measurable
random variable 1, such that for every ¢ € C§° we have

<ut,w>=<¢,w>+/< o D*w)der/ o) du] +// F(dz,ds)  (3.22)

for P ® dt-almost every (w,t) € Q x [0,T], where D}, = —D,, for o« =1,2,..,d, and D}, is the
identity operator for a = 0. Then there is an Ly-valued adapted cadlag process t = (at)te[O,T]
such that for each ¢ € C§° equation (3.22) holds with u in place of u almost surely for all
t € [0,T]. Moreover, u =u for P ® dt-almost every (w,t) € Q x [0,T], and almost surely

t
aely, = I, +p/0 /Rd [P usg! da du’

t
8 [ a2t =20 = Dl 2D+ (= Dl alf,) do ds

t
+/ // plis— [P tus_hs dz 7(dz, ds)
Rd
/// \us_+h|p s [P — plis— [P2us—h )dxﬂ'(dz,ds)

for all t € [0,T), where ts— denotes the left-hand limit in L,(R?) of u at s € (0,T.

The following slight generalisation of Lemma from [16] will play a role in obtaining supre-
mum estimates.

Lemma 3.11. Let T € [0,00] and let f = (fi)i>0 and g = (g¢)t>0 be nonnegative Fi-adapted
processes such that f is a cadlag and g is a continuous process. Assume
Eflgze < Egrlgoze (3.23)
for any constant ¢ > 0 and bounded stopping time T < T'. Then, for any bounded stopping
time 7 < T, for q € (0,1)
Esup ff < qungt

t<t
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Proof. This lemma is proved in [16] when both processes f and g are continuous. A word
by word repetition of the proof in [16] extends it to the case when f is cadlag. For the
convenience of the reader we present the proof below. By replacing f; and ¢; with fiar
and giaT, respectively, we see that we may assume that 7" = co. Then we replace g; with
max<; gs and see that without losing generality we may assume that ¢; is nondecreasing. In
that case fix a constant ¢ > 0 and let 8y = inf{t > 0: f; > ¢}, 0, = inf{t > 0: g; > c}. Then

P(sup fy >¢) < Py <17)< Py <7)+ PO <7 Nby,04>7)
t<t

< Plgr 2 )+ Plgo < ¢, fonapnoy 2 ) < Plor > ) + - Blyscfranyo,.
In the light of (3.23) we replace the expectation with
Elgy<cGrrogno; < Elgy<cgrno, = Elgo<c(9r N g0,)
< Elg<c(gr Nc) < E(gr Nc).

Hence

1

P(Supft > C) < P(gT > C) + 7E(C/\g7')7
t<t &

and it remains to substitute ¢!/? in place of ¢ and integrate with respect to ¢ over (0, 00).

The lemma is proved. O

Finally we present a slight modification of Lemma 5.3 from [9] which we will use in proving
regularity in time of solutions to (1.1)-(1.2).

Lemma 3.12. Let V be a reflexive Banach space, embedded continuously and densely into
a Banach space U. Let [ be a U-valued weakly cadlag function on [0,T] such that the weak
limit in U at T from the left is f(T). Assume there is a dense subset S of [0,T] such that
f(s) €V forse S and sup,eg |f(s)|y < oo. Then f is a V-valued function, which is cadlag
in the weak topology of V', and hence sup,cpo | f(s)|v = supgeg | f(s)|v-

Proof. Since S is dense in [0,7T], for a given ¢t € [0,7") there is a sequence {t,}>2; with
elements in S such that ¢, | t. Due to sup,cy |f(tn)|v < oo and the reflexivity of V' there
is a subsequence {t,,} such that f(t,,) converges weakly in V to some element v € V.
Since f is weakly cadlag in U, for every continuous linear functional ¢ over U we have
limy 00 ¢(f(tn,)) = @(f(t)). Since the restriction of ¢ in V' is a continuous functional over
V' we have limy_,o p(f(tn,)) = ¢(v). Hence f(t) = v, which proves that f is a V-valued
function over [0,7"). Moreover, by taking into account that

|f(O)lv = |vlv <liminf |f(t,)[v < sup|f(t)|v < oo,
k—o0 tes

we obtain K := sup,c(o7) |f(s)|v < oc. Let ¢ be a continuous linear functional over V. Due
to the reflexivity of V', the dual U* of the space U is densely embedded into V*, the dual of
V. Thus for ¢ € V* and € > 0 there is ¢. € U* such that |¢p — ¢.|y+ < e. Hence for arbitrary
sequence t,, | t, t, € [0,T] we have

[0(f(£)) = o(f (tn))| < [@=(F () = f(E))] + (& = @) (f () — f(En))]
<@ (f(t) = Ftn))| +elf () = Ftn)lv < oe(f(E) — f(En))] + 2¢ K.
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Letting here n — oo and then € — 0, we get
limsup |p(f(t)) — ¢(f(tn))| <0,
n—oo

which proves that f is right-continuous in the weak topology in V. We can prove in the same
way that at each ¢ € [0, 7] the function f has weak limit in V' from the left at each ¢ € (0,77,
which finishes the proof of the lemma. O

4. SOME RESULTS ON INTERPOLATION SPACES

A pair of complex Banach spaces Ay and A;, which are continuously embedded into a
Hausdorff topological vector space H, is called an interpolation couple, and Ay = [Ag, A1]p
denotes the complex interpolation space between Ay and A; with parameter 6 € (0,1). For
an interpolation couple Ag and A; the notations AgNA; and Ag+ A; is used for the subspaces

AgNAr={veH:ve Ajandv € A1}, Ag+Ai={veH:v=uv+uvy v; € A;}
equipped with the norms |v|4,n4, = max(|v|a,,|v|4,) and
[v]ag+4, = inf{|vola, + |vi|la, : v =vo +v1,v0 € Ag, 1 € A1},

respectively. Then the following theorem lists some well-known facts about complex inter-
polation, see e.g., [5] or 1.9.3, 1.18.4 and 2.4.2 in [34] and 5.6.9 in [18].

Theorem 4.1. (i) If Ay, A1 and By, B1 are two interpolation couples and S : Ag + A1 —
By + By is a linear operator such that its restriction onto A; is a continuous operator

into B; with operator norm C; for i = 0,1, then its restriction onto Ag = [Ap, Ailp
is a continuous operator into By = [By, Bilgp with operator norm Cé_eC’f for every
g€ (0,1).

(ii) For a o-finite measure space M and an interpolation couple of separable Banach spaces
Ay, A1 we have

[Lpo (Dﬁv AO)? Lpl (mv Al)}Q = Lp(gﬁa [A07 Al]@)y

for every po,p1 € [1,00), 0 € (0,1), where 1/p = (1—0)/po+0/p:1.
(iii) Let H" denote the Bessel potential spaces of complex-valued functions. Then for
mo,m1 € R and 1 < pg,p1 < 00

[Hp, Hy'lo = Hy',

where m = (1 — 0)mg + Omq, and 1/p = (1 — 0)/po + 0/p1. Moreover, for integers m
one has H)' = W with equivalent norms.

(iv) For a UMD Banach space V, denote by H,'(V') the Bessel potential spaces of V -valued
functions. Then for 1 < p < co and mg,m; € R

[Hy" (V), Hyt (V)]o = Hp' (V)

for every 6 € (0,1), where m = (1 — 0)mg + 6m;.
(v) For 6 € [0, 1] there is a constant cy such that

—0,,,10
0], < colvly,’[0l%,
for allv e Ag N Aj.
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5. L, ESTIMATES

Let Assumptions 2.1 through 2.6 hold with an integer m > 0, and assume in this section
that R = 0. Let u = (ut)ejo,r) be a W];”‘*'z-valued solution to (1.1)-(1.2). Then for each
¢ € C§° and any multi-number a with |a| < m, from the definition of the generalised solution
and by integrating by parts we have

t

(Datis, ) = (Dot ) + / (Da(Astis + o), ) ds + / (Do (Mg + 7). ) duo]

0

/ / o(lMus— + s T"us— + hg), @) T(dz,ds)

for all t € [0,T] and almost all w € . To shorten some expressions we introduce the operators
J&, J7 and 17, defined by

Fo=J+ X1, Jp=Jlo+ Ao, Tp=I"0+~T"

on functions . For functions v € W} let v = {v, : |a] < m} denote the vector whose
coordinates are the derivatives v, := Dy for |a| < m. We use also the notation I"v, J"v
and T"v for the vectors with coordinates I"v,, J"v, and T"v,, respectively for |a| < m.
Then applying Lemma 3.9 to u; we have

t
’ut|ip :|u0|ip +p/ Qp(sausafsags) + ny(saus) + QZ(S,US)CZS
0
t
T+ / / 0, P2 Doty Do Mt + ) d o]

///{ S Dot + DaTus + h)2)P2 — fu, P

laj<m

—p Z |us_ [P 2Dous_ Do(IMus_ + hy)} dzm(dz, ds)

|a|<m
/ / / plus- P2 Y Dot Do(IMus— + hy) da 7(dz, ds) (5.1)
|la|<m
almost surely for all ¢t € [0,7], where we use the notation

Q.0 f.9) = [ VPP S vaDalLo+ 1)+ LS S DM+ gy de

laj<m r=1 |a|<m

1 . p—4 T r\|2
+ [ B =2 Y Y waDa(Mu+ g da, (52

r=1 |a|<m

Q5(t,v) // pIVIP Y 06 (I0) o drv(dz) (5.3)

\a|<m

QU(t,v) = / / PP S 0a (I do u(dz)

la|<m
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for v € W)"+2, for each f € W, g € W (ly), w € Q and ¢ € [0,T]. In order to estimate
Elwly we define also the “p-form”

Qtco) = [ [ o™ 3 v (T0)a dapaz)

|a|<m

+ /Z /Rd | Z (v + T + R)2[P/2 — |[v[P — p|v|P—2 Z Va (") + ho) dz p(dz)  (5.4)

laj<m la|<m

for v € W2, h € W)'"2(L,2), for each w € Q and t € [0, 7).

Proposition 5.1. Let Assumption 2.1 hold. Then for any p € [2,00) there is a constant
N = N(d,p,m, K) such that

p P p
Qolv.1,£,9) < N (1ol + B +1olesr,) (5.5
Jor allv e W2 fe W, ge Wit(ly), we Q and t € [0,T].
Proof. This estimate is proved in [12] in a more general setting. O

Proposition 5.2. Let Assumption 2.3 hold with an integer m > 0. Then for w €  and
t€[0,T]

9 p P P
Qp(v7t7 h‘) S N(”U W;" + ’h‘W;)"’L+1(£p ) + 1P>2‘h|WZ§n+2(LP,2)) (56>

,2

Jorve W2 and h € W)"2(Ly5) with constants N = N(d, m,p, K, Ky).

Proof. First we claim that for any |a| =n <m

(I"v) g = I"vg + Z b Tg + Z BTy (5.7)
1B|<n 1B|<n
M) = JMo + Y b IMg+ > &P T, (5.8)
1Bl<n |B|<n
with some functions %, ¢ and ¢*? of (w,t, z,z), such that for |3| < n
|DF6P) < N7,  |DFe®P| < N7, |D*e’| < N7* fork<m—n (5.9)

with a constant N = N(d, m, K). The reader can prove this easily by induction on n, noticing
that

(JM); = JM; + i Mo, (IM0); = Mo + nF Ty,
(T"); = T + 0 T,

where, as before, the subscripts indicates derivatives in the corresponding coordinates. Using
equations (5.7) and (5.8) we have

Oyt v, h) = /Z/Rd T + (b + )T + WP — [v[P dep(dz)

—/ / PIVIP 200 (IMvg — JM0a + b*Pug 4 (¢ — &8T5 4 hy) da p(dz),
z JRd
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where b and ¢ denote the matrices with entries b** and ¢*?, respectively for |a| < m and
|B] < m. Clearly,

—p|V[P 200 (1Mo — J™0a) = p|v[P2va Diven' = J1v|P — TP,

and
5

[T + (b+ )TV +hP — [v[P — plv[P 2o (b vg + ha) = > A
with -
Ay =TV — |v[P = I|v]P, Ay :=p|TVv[P 2T, Tug
= |Tv + (b4 ¢)Tv + hP — [TV [P — p|Tv[P~ 2T, (6% + ¢*®)Tvs + hy)
Ay = pI(|v]p72vav5)baﬁ, As = pI(|v[P"%v4) ha,
where to ease notation we write I and 7" in place of 17 and T, respectively. Hence

Qp(v,t,h) //J"\v\pdx,udz —i—Z//Adx,udz
—i—// PIVIP 200 (2P — YT da p(d2).
7 JRd

By Lemma 3.7
/ / JMNv|Pdzp(dz) < Nivlb Wy

and due to (5.9)
/ Agdzp(dz) < Nlvlb, W / / Aydzp(dz) < N|vlfy,
z JRd z JRd
with constants N = N(d, m,p, K, Ky). By Taylor’s formula, (5.9), and Assumption 2.3
1
As < p(p—1) / ITv + (b + ¢)Tv + 0h)[P2|(b + )Tv + h|? d§
0

< N(JhP + T|v[P~2|h)? + 7*T|v[P). (5.10)
It is easy to see that

/ Agdxp(dz) < Nlvl? W
Z JRA
and
/ / PIVIP 20, (6% — *P)Tvg da pu(dz) < N|v W
Z JRA

Thus, from the above estimates we have

Qp(v,t,h) < N(Jv Z;V;n + \h|’v’vgn(£p72)) + N/z /Rd T"|v|P~2|h|? da p(dz)

+p// I(|v|P2v0) he dz pu(dz).
Z JRd

H, (v, h) :/Z]/R PV 2 dr| (),

It remains to estimate
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K,(v,h) = / / Tv[P~2|h|? dzp(dz).
Z JRd
by the right-hand side of (5.6). If p = 2, then we have
KQ(U,h) = ‘h|%2(52)

To estimate Ha(v,h) notice that by Taylor’s formula, the change of variable y = 74, () =
x + On(x) and by integration by parts we have

/R Mg dr = /R ) /0 lvai(Tﬂn(x))ni(x)ha(l') do dz

/R d / v (75,1 (2))ha (g () [det D7y ()| d

/Rd / ()¢ (x) Yhagp(Tg, (2)) dO dzx

where 8 =0,1,2,...,d and ¢*? are some functions of (w,t, z,z, ) such that

> KPP <Ny

laf<m,|B|<1

with a constant N = N(d, m, K). Hence by the Cauchy-Schwarz and Young inequalities we

get
/ IMvghg, dx<N/ v ( )]2dm—|—N’/ Z \hg(z, 2)|* da
Rd

|B]<m+1

with N’ = N'(d, m, K), which gives the estimate for Hy(v, h) and finishes the proof of (5.6)
for p = 2. If p > 2 then by taking r = p, ¢ = |v|[P"2v, and h = h, for each « in estimate
(3.15) and using Young’s inequality, we get

Hp(U, h) < N(|U‘ m + |h|Wm+2(£p 2))

Similarly, by taking r = p/2, ¢ = |[v|P~2 and g = |h|? in estimate (3.16) and using Young’s
inequality, we have

P p
Kp(v,h) < N(|vljym + ’h‘wﬁ“(ﬁp,z))’

which completes the proof of the proposition. O

Corollary 5.3. Let Assumption 2.8 hold with an integer m > 0. Then for any p > 2 and
v E W;"“

Qp(t,v) < Nlvljym (5.11)
p
for allw € Q and t € [0,T] with a constant N = N(d,p,m, K, Ky).

Proof. Notice that
Qp(t,v) = Qp(t,v,0) — Qy(t,v),

Z (0 + TP = VP =pv[P™> D va(l)a
al<m

|laj<m

where
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By Proposition 5.2, we have
Qp(t,v,0) < N[y
p

with a constant N = N(d,p,m, K, Ky). Moreover by the convexity of the function f(x) =
|z|P, we have Q,(t,v) > 0, which finishes the poof of this corollary. O

For integers m > 0 set

o0

Prp(t.v,9) = (pIVIP2va, MV +g")a)? (5.12)

r=1

Qunp(t, 0, 1) :=/Z/Rd{( D w0+ h)a)P? — [P

la|<m
— p|v[P 20 (I"0 + h)o } do pu(dz) (5.13)
for v e Wt g e W (ly), h e W) (Ly5), w € Q and t € [0, T], where repeated indices

o mean summation over all multi-numbers of length m. (Recall that for functions v € W,
we use the notation v with coordinate v, = Do for |a| < m).

Proposition 5.4. Let m > 0 be an integer and p € [2,00). Then the following estimates
hold for all (w,t) € Q x [0,T].
(i) If Assumption 2.1 is satisfied with m > 0 then

2 2p—2
B2, (t0,9) < N2y + 1025210l ) (5.14)

for allv e W and g € W) (ly), with a constant N = N(d,m,p, K).
(ii) If Assumption 2.3 is satisfied then

Qe p(t,v,h) < N(|U‘€V;n+1 + ’h‘];v;g) (5.15)
for allv € Wg”“ and h € W(Ly2) with N = N(d, m, p, K, K5).

Proof. Noticing that p|v|P~2v,0" D;v, = 0" D;|v|P, by integration by parts and by Minkowski’s
and Holder’s inequalities we can see that
oo
Brp(t0,9) =Y (VI va, M va + gi))?
r=1

can be estimated by the right-hand side of (5.14). By Minkowski and Hélder’s inequalities
it is easy to show that

“B?n,p(tv v, 9) — ‘i}?n’p(t’ v,9)
can also be estimated by the right-hand side of (5.14). To prove (ii) let y denote the vector

with coordinates y, = (I"v + h)4 for |a| < m. Then the integrand in (5.13) can be written
as

A=V +ylP = VP = plvP P vaya.
By Taylor’s formula
0< A NP2y + |y[") < N'([vP~?lef* + [v[P~*[b]* + [ + [e[?)
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with constants N = N(d,p,m) and N' = N'(d,p,m), where e denotes the vector with
coordinates e, := (I"v), for |a| < m. By Fubini’s theorem and Hoélder’s inequality

| L doudn) = [ o @, de < ol .
Using Holder’s inequality, taking into account (5.7) and using Lemma 3.1 we obtain
_ 2 2
/Z/]Rd Iv|P~2|e|? dzp(dz) < /Z viz, \e]%p u(dz) < N2K%‘U‘€V;n”u %V;)nﬂ.
By Lemma 3.1 and (5.7) we have
[ lel dentaz) < NPRP Il
Combining these inequalities and using Young’s inequality we get (5.15). O

6. PROOF OF THE MAIN RESULT

6.1. Uniqueness of the generalised solution. Let Assumptions 2.1 through 2.4 hold with
= 0. For a fixed p € [2 00) let ul®) = (ugz))te[o 7] be generalised solutions to equation (1.1)

with initial condition uo =1 € L, for i = 1,2. Then for v = v — 4 by Lemma 3.10 on
It6 formula we have that almost surely

t
yei=lulh = / Qu(ve) + Q5(0s) + QU(0s) + (plosl v, Rovy) ds
0

+ /0 /Z/Rd Pl(z,vs_)(x) dx m(dz,ds) + C1(t) + Ca(t) (6.1)

for all t € [0,T], where (; and ¢y are local martingales defined by

¢
10 ::p/ / \vs\p_zvs./\/lgvs dx dw?,
0 JR4

t
t) ::p/// [vs_|P2vs T, da 7 (dz, ds),
0 Jz Jrd

Qs(), Q5(-), Q(-) and PJ(z,-) are functionals on W, for each (w,s) and z, defined by

Qs(v —p/ —D;([v[P~2v)a¥ Djv + biv[P">vDiv + cs|vfP + Bt vl QZIMrv\Qda:
r=1

/ —D;([v]P~20) . v—|—|v|p 2vjovdx+// plv|P~ 2v)\§7zlfvd:vdz,

Q" (v / —D;(Jv]P~%0)J, v+|v\p 2vj0vdx+// plv|P~ 21})\’7 JMdrdz,

P(z,v) := |v+ TP — |v|P — p|v|P~2u]"0.
Recall that b* = b — Dja", J} and J; are defined by (2.3)-(2.4), and (v,w) denotes the
Lebesgue integral over R¢ of the product vw for real functions v and w on R%.
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Note that due to the convexity of the function |r|P, r € R, we have
Pl(z,v)(x) >0 for all (w,s,z,x) (6.2)

for real-valued functions v = v( ), z € R%. Together with the above functionals we need also
estimate the functionals Q,(-) and Q¥(-) defined for each (w, s) € Q x [0,T] by

0= | /RP o) da p(dz), - Q1) 1= Qu(o) + Q(v)
forvEWpl.

Proposition 6.1. Let Assumptions 2.1, 2.2 and 2.3 hold with m = 0. Then for p > 2 there
are constants N = N(d,p, K), Ny = Na(d,p, K, K¢) and N2 = Na(d, p, K, K5) such that

Qs(v) < NJoff , Q°(v) < Nifolf , Q"(v) < Nofulf , Q"(v) < Nofoff ,  (6.3)
Q(v) < Nafoly, (6.4)
p
for allv € VVp1 and (w,s) € Q x [0,T].

Proof. Notice that the estimate (6.4) is the special case of Proposition 5.4 (ii), and for v € sz
the second and third estimates in (6.3) follow from the estimate (5.11) in Corollary 5.3. Notice
also that for v € W} the first estimate in (6.3) is a special case of (5.5) in Proposition 5.1,
and the last estimate in (6.3) is a special case of the estimate in Proposition 5.2. It is an
easy exercise to show that the functionals on the left-hand side of the inequalities in (6.3)
are continuous in v € Wpl, that completes the proof of the proposition. O

Define now the stochastic process

t
X = |vt|ip +/0 |US‘€V§ ds, tel0,T]

and the stopping time

T = inf{t € [0,T] : X; > n} A p,
for every integer n > 1, where (p,,)72 is an increasing sequence of stopping times, converging
to infinity such that ((;(tApn))iejo,r) is @ martingale for each n > 1 and 7 = 1,2. Then clearly,
E¢(tAT,) =0forte[0,T] and i = 1,2. Due to (6.2) and the estimate in (6 4) we have

T ATn TNy,
E/ / | P (2, vs— )(w)\dx,u(dz)dsgNE/ Vs ds < o0,
R4 0 p

which implies
tATh
E/ // Pl (z,vs_)(z)dzm(dz,ds)
0 z JR4

tATh

tATh
= E/ / Pl (z,vs_)(x)dx u(dz)ds = E Qs(vs—) ds.
0 z JRrd

0
Thus, substituting ¢ A 7,, in place of ¢ in (6.1) and then taking expectation and using Propo-
sition 6.1 and Assumption 2.5 we obtain
tATh

Eyinr, = E Qs (vs) + Q5(vs) + Q"(vs) + (plvs|P~2vs, Rug) ds
0
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tATn t
SNE/ |v5|ipds§N/ Ey(s A1p)ds < NTn < o0
0 0

for t € [0,7]. Hence by Gronwall’s lemma Ey(t A 7,) = 0 for each ¢t € [0,7] and integer
n > 1, which implies that almost surely y; = 0 for all ¢ € [0, 7], and completes the proof of
the uniqueness.

6.2. A priori estimates.

Proposition 6.2. Let Assumptions 2.1 through 2.4 and assume Assumption 2.6 hold with
an integer m > 0 and R = 0. Let u = (ut)sejo,m be a W;,”*‘Q—valued generalised solution to
(1.1)-(1.2) such that it is cadlag as a W}"-valued process and

T
E/ \ut|€vm+2 dt + Esup |u[jym < oo.
0 P t<T P

Then
Esup [ug]jy, < N(ER[Y. + EKE (T))  for every integer n € [0,m] (6.5)
tST p p >

with a constant N = N(m,d,p,T, K, K, Ky).

Proof. We may assume that the right-hand side of the inequality (6.5) is finite. For a fixed
integer n € [0, m], multi-numbers |a| < n and ¢ € C§°, we have

d(Dauta ‘P) :(Da-AtUt + Dq ft, 90) dt + (DaM:ut + Dagftna ‘P) dw;
" / (Da(IMur— + he(2)), ) #(dz, di).
7Z

For an integer n < m let u denote the vector with coordinates u, := Dyu for |a] < n. Recall,
see (5.1), that by Lemma 3.9 on It6’s formula we have

3
dluely, = (Qp(t, ur, fr, g1) + Q5(t, ur) + Qp(t, us, he)) dit + ZdCi(t)a

=1

where the @), Qg and Q,,, are defined in (5.2), (5.3) and (5.4), with n in place of m, and
Gi = (Gi(t))efo,) 1s a cadlag local martingale starting from zero for each i = 1,2, 3, such that

d¢i(t) = p(JwelP~* Daug, DaMiuy + Dagy) duy,

deo(t) = p / ([t P2 Dae_, Dal"us + Duhe.2) #(dz, dt) (6.6)
Z
and
dCs(t) = / Py (t, us, he) w(dz, dt) — / Py(t, us, he) p(d2)dt, (6.7)
Z Z
where
Pyltosh) = [ 1Y 0+ 0+ a2 = P = pivl? 2ua(I0 + B)a ds
]Rd

laj<n
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for v € W;”” and h € W;EH. By Proposition 5.1 and Corollary 5.3 we obtain
3
djugl? < N(luelfy, dt +dKh (1)) + ) dGi(t)
Hence using the estimate (5.15) in Proposition 5.4 we have

t
Eluipr, |P < Elugl? + N/ Eluspr,|pyn ds + NEKE (T A7y,
0 4 ’

for all ¢ € [0, T], for a localising sequence (73)7°, of stopping times for (;, i = 1,2,3. Hence
by Gronwall’s lemma
E‘ut/\Tk b fi < N(E‘w‘p e + Elcp (T))

for t € [0,7] and k > 1 with a constant N = N(d,m,p, T, K, Kg, Kj 7), which implies
sup Elu|yy, < N(E[[yy, + EKF (1)) (6.8)
tST p P >

by Fatou’s lemma. To show that we can interchange the supremum and expectation it suffices
to prove that for every € > 0

Esup |G (t)] < eEsup |ulfyn + N(E[dlym + EKE (T)) < oo (6.9)
t<T t<T P P ’

and
Esup |Ca(t) + (3(t)| < eFE sup \utmfg + N(E|@D|€V;L + EKL ,(T)) < o0 (6.10)

with a constant N N(e,d,m,p, T, K Kg, K3). The proof of (6.9) is well-known and it goes

as follows. Recall the notation ‘Bp in (5.12) and notice that by the Davis inequality, using
the estimate in (5.14) we have

T 1/2
Esup|(i(t)| <3E (/0 ‘Bg(t,ut,gt)dt>

t<T
1/2

T
<NF </ |ut\Wn + IUtIQP 2’9t|W” dt)
0

- 1/2
< NE (sup g | n/ || Ty o |uelfy ’gt’W" dt)
t<T P Jo

< eEsup |[utlfyn +£1N2E/ \ut|Wn + |gelhy o dt < oo, (6.11)
t<T 4

which gives (6.9) by virtue of (6.8). To prove (6.10) we first assume that pu is a finite measure.
Notice that

(1) = Golt) + Go(0) / [ Al #a)as.
where A(s,v, h) is defined by
A(s,0,h) = Y (w+T0+h)2P2 = |v|P

la<n
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for v € W', v = (va)jaj<n and h € Wg”“(ﬁpg). By similar calculations to those in the
proof of Proposition 5.2 we can easily see that

6

A(s,v,h) =Y Bi(s,v,h)

i=1
with
By =1I"\v[’, By =plv[" *vaha,
By = [T + (b + )T + BJP — [T]? — pl TP T (B + )T + he),
By = pI"([v|P?v0)ha
Bs = p|T"V[P 2 T"0,b* Tvg,  Bg = p|T"v[P~2T M0, T,
where b = (b*?) and ¢ = (c*?) are from (5.7). Hence
6

() = Z(pil(t) — pia(t))

=1

pia(t) = /0 t || Bitssuee iy wtas,as),

t
piz(t):/ / B;(s,us—, h)dzxu(dz)ds.
0 JZ JRA

Note that for p;(t) := p;1(t) — pi2(t) one can always have the supremum estimate

with

Esup |pi(t)] < Esup |pi1(t)] + Esup |pia(t)]
t<T t<T t<T

T
< 2E/ / |/ B;(t,us, h) dx|u(dz) dt. (6.12)
0o Jz Jre
This, however, is not always useful, and when almost surely
T 2
(pi)(T) :/ / ‘/ Bi(s,us—, h)dz| p(dz)ds < oo,
o Jz!Jrd

then we can view p;(t) as the stochastic It6 integral

t
// Bi(s,us—,h)7(dz,ds)
0 Jz Jrd

and apply the Davis inequality

Esup |pi(t)] < 3E(p;)"/*(T).
1<T

By Minkowski’s and Holder’s inequalities

T 2 T 2
/ / ] |u5|p*20auspahsdx‘ u(dz) ds < / ( / P~ by, dx) ds
0 Z R4 0 R4

T
2p—2 2
</0 s 22 sy, ds < co.
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Thus we can view (3(t) as a stochastic It6 integral, and applying the Davis inequality we get

Esup |i(t)| < eEsup [ulfy, +e " N(E[Y[,. + EXE (T)) (6.13)
t<T t<T P P ’

for i = 2 in the same way as estimate in (6.9) is proved. By Lemma 3.7 (iii) we have

T 2 g
/ /‘/ Ilu,l? da u(dz)dSSN/ [us ity ds.
0 Jz!Jrd : ’

which, as before, allows us to get the estimate (6.13) for i = 1. By estimate (3.15), Young’s
inequality and (6.8), we have

T
E/ /‘/ I”(|us,|p_2Daus,)DahSdx‘,u(dz)ds
0 Jz!J/rd

T
< NE/ |us|Prn ds + NEK}, ,(T) < N'(E[YE,, + EXE (T))
0 p > p >

with constants N and N’ depending only on K, d, m, p, T, K¢ and Kj. Thus we can use
estimate (6.12) to get

Esup|¢(t)] < NE’I/J’%/I? + NEKE (T) (6.14)
t<T

for i = 4 with a constant N = N(K,d,m,p,T, K¢, K5). Similarly, using the estimate for As
in (5.10) and the estimate (3.16) we obtain (6.14) for ¢ = 3. Due to (5.9)

‘/ Bs(t,v, h) dz| < Nijlv[E,... ‘/ Be(t,v, h) dz| < NF[o[?,.,
R4 P R4 P

for v € W, Consequently, viewing (5(t) as Ito integral we get the estimate (6.13) for i=5,
and applying estimate (6.12) to (s(¢) we obtain the estimate (6.14) for i = 6. Combining the
estimates (6.13) for ¢ = 1,2,5 and the estimate (6.13) for i = 3,4,6 we obtain (6.11).

In the general case of o-finite measure p we have a nested sequence (Z;)72, of sets Z, € Z
such that ©(Z;) < oo for every k and U2 ,Z, = Z. For each integer & > 1 define the
measures

me(F) = 7((Zk x (0,T]) N F),  u(G) = n(Z, N G)
for F € Z® B((0,T]) and G € Z, and set 7y,(dz, dt) = m(dz, dt) — e ® dt. Let ¢§F) and
Cék) be defined as (o and (3, respectively, but with 7, 7 and pp in place of 7, 7w and u,

respectively, in (6.6) and (6.7). By virtue of what we have proved above, for each k we have

Esup |8 (t) + &7 (6)] < eEsup lulty . + N (B[ + EKE(T)) < oo (6.15)
t<T t<T P P

for € > 0 with a constant N = N(g,m,p, T, K, Kg, K35). Note that for a subsequence k' — oo

g.(k/)(t) — ((t) almost surely, uniformly in ¢ € [0, 7]

7

for i = 2,3. Hence letting k = ¥’ — oo in (6.15) by Fatou’s lemma we obtain (6.10), which
completes the proof of the proposition. O
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6.3. Existence of a generalised solution. Before the construction of a generalised solution
o (1.1)-(1.2), we introduce some notations. For integers r > 1, real numbers n > 0 and p > 2
let Uy, denote the space of Hj-valued F ® B([0,7T])-measurable functions v on Q x [0, 7]

such that
T p/r
v %n =F </ ]vt\’}{n dt) < 0.
0

The subspace of well-measurable functions v : Q x [0, T] — H, in Uy, is denoted by V7, and
we will use VJ to denote Vi . Set W := L,(Q, Fo; H},), and recall from the Introduction
the definition of the spaces H) = HZ(R) and HZ (V) for separable Banach spaces V.

In the whole section we assume that Assumptions 2.1 through 2.6 with m > 1 are in force.
By a standard stopping time argument we may assume that

Em + EKD () < o. (6.16)
P K
First we assume that m is an integer, R = 0, and make also the following additional assump-
tion

Assumption 6.1. The initial condition ¢ and the free data f, g and h vanish if |z| > R for
some R > 0.

Under the above conditions we approximate the Cauchy problem (1.1)-(1.2) by mollifying
(in x € R?) all data and coefficients involved in it. For ¢ € (0,¢¢) we consider the equation

dvy(z) = ( E0e() + ff‘%)) dt + (M?Ut(@ n g§5>7"(:c)) du!

+ / (17 v (@) + 72T v (@) + ) (2, 2)) F(dz. o), (6.17)
Z
with initial condition
vo(z) =9, (6.18)
where g is given in Corollary 3.4,
ME" = U(s)irDi +B(a)r7 A€ = [ +N§(5) +Nn(5)
with operators - ‘
Lf =a""D;; + bOiID; 4+ ¢ af = al®) 4l
and

NE @) = [ () + 0500 @1 gl v(az),
Z

Mwwm=/JW¢m+u&W@wmwmmm>
7Z

for real-valued differentiable functions ¢. Recall that I denotes the identity matrix, and v(®)
denotes the mollification v(®) = S%v of v in z € R? defined in (3.4).

Note that by virtue of standard properties of mollifications and by Corollary 3.4 and
Lemma 3.5, we have that Assumptions 2.1 through 2.6 are satisfied for (6.17)-(6.18) with
every integer m > 0 with non-negative functions & = &,,(2), 7§ = ;u(2) of z € Z and constants
K = K,

/fm v(dz) < oo, K2 Kg7m:/zﬁfn(z)u(dz)<oo
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Moreover, there is a constant 6 > 0 such that P ® dt ® dz-almost all (w,t,z) € Q x Hp
(2059 — @My 2120 > 6122 for all z = (2',...,2%) e R
Due to (6.16) and Assumption 6.1
EW‘%/V; + BK 5(T) < o0

for each n. Hence by [15] the Cauchy problem (6.17)-(6.18) has a unique generalised solution
u®, which is a W3'-valued cadlag process and for each integer n > 0, and there is a constant
N such that

Bsup|ufffry < N(EW iy + EKE(T)) < oo

Thus by Sobolev’s embedding u° is a cadlag W'-valued process for every n such that

Esup |u|jyn < oo.
t<T p

Moreover, by Proposition 6.2 and Lemma 3.5 for m > 1 and n = 0,1, ..., m we have

[ulvp, < N([¢lwp + [ flup + |g|Hn+1(l2 + |h|Hn+i ’2)) forn=0,1,2,....,m (6.19)

Fp =
for every integer r > 1 with a constant N = N(d,p,m, T, K, Kg, K5 7), where ¢ = 1 when p = 2
and ¢ = 2 when p > 2. Recall that Vi, denotes the subspace of well-measurable functions
v:Qx[0,T] = Hp in U?,. Since V! is reflexive, there exists a sequence {ex}72; and a
process u € V’ﬁ’p such that limg_ .o € = 0 and u®* converges weakly to some u in Vﬁp. To
show that a modification of u is a solution to (1.1)-(1.2) we pass to the limit in the equation

t t
(w5 0) = (), ) + / (A, ) + (£, o) ds + / (M7 + g, ) du!

0
/ / I77< >u‘E + ’y(a T )uE + 19, @) 7(dz, ds) (6.20)

where ¢ € C§°, and (ASuS, ) is defined as (Agus, @) in (2.5) but with u®, a®, b, (&) ¢
ne), ()\5)(5) and ()\77)(8) in place of u, a, b, ¢, &, n, A and \" respectively. To this end we take
a bounded well-measurable real-valued process ¢ = ({¢)e[o,7], multiply both sides of equation
(6.20) with ¢; and then integrate the expressions we get against P ® dt over € x [0,7]. Thus
we obtain

T 3 T rt
w)=p [ G0 p)de+ 3R + | [ e pasa

+E/ Ct/ , ) dwy dt+E/ Ct// W o) 7(dz, ds) dt, (6.21)

where F and F!, i = 1,2, 3, are linear functionals of v € V}D, defined by

T T t
W) =E / CGlong)dt, Fl=E / G / (ASvs, ) ds dt
0 0 0
T t
.y / G / (M0, ) du dt
0 0
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and . .
’(v) = E/ Ct/ /(I”(E)vs + 7§?Z)Tn(5)vs,g0) 7(dz,ds) dt.
0 0Jz

For each i = 1,2,3 we also define the functional F' in the same way as F is defined above,
but with A, M, n and v in place of A%, M®, 5(®) and 4(%) respectively. Obviously, by Holder’s
inequality and the boundedness of (, for all v € V}D we have

F(v) < Clolvylelz,

with ¢ = p/(p — 1) and a constant C' independent of v and e, which means F € VII,*, the
space of all bounded linear functionals on Vll,. Next we show that F! and F* are also in Vll,*
for each € > 0, and Fg — F' strongly in V})* ase —> 0 fori=1,2,3.

Lemma 6.3. For sufficiently small ¢ > 0 the functionals F* and F! are in V}J* fori=1,2,3.

Proof. To show F! € Vl we notice that F! = Y7 _| RF(v) with

E/ Ct/ (a* Djvs, Dip) + (0" Divg + Py, @) ds dt,

R2 E/ Q/ \75@115, Djyp)ds dt, R3 E/ Ct/ Jg(g)vs, ) dsdt,

E/ ct/ Thoyve Dig)dsdt,  R3(u E/ g/ T0yvs.0) ds dt,
t
:E/ Ct//((Aés’z)(s)ff<5)’t)s,90)V(dZ)dsdlﬁ
0 0 Z
T t (e)
—£ [ G [ [(10Or e, ) ndz) ds i (6.22)
0 0 JZ

where jg(g), j;(g), ng Jg@ are defined by (2.3) and (2.4) with £© and n®) in place of

n respectively, for i = 1,2,....d. Since the functions ¢, a®, b©) and ¢ are in magnitude
bounded by a constant, by Holder’s inequality we have

R.(v) < Nlolyslelm1, (6.23)

for i = 1 with ¢ = p/(p — 1) and a constant N independent of v and e. which shows that
R! € V})* for all . Using Taylor’s formula

1
v(z +0n®)) —v(z) = / Div(x 4 90700 dy,
0

and taking into account that || is bounded by a constant, we have

R2(v <c/ // //Rd|Dvsx+290n ) (2))[72(2)| Dy ()| da pu(dz) ds dO d.

Hence by Holder’s inequality and then the change of variable y = x + 19017&2 (z), by Corollary
3.4 we get (6.23) for i =2 and € € (0,¢), with gg given in Corollary 3.4, which proves that
R? € V},* for ¢ € (0,e9). We can prove in the same way that R. € Vll,* for i = 3,4,5 and
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e € (0,&0). Similarly, due to the boundedness of ¢, Assumptions 2.2 and 2.4, using Lemma
3.1 and Holder’s inequality we have (6. 23) for i =6, 7 for e € (0,£0). Hence F} € V)" for

e € (0,20). Due to the boundedness of ¢, 0'®)" and BE)7 by Davis’ and Holder’s inequalities,
we get

T 1/2
P20 < CB( [ MM R ds) " < Clily e,

for v € V; with constants C' and C’ independent of v and e, which shows F2 € V})*. By the
boundedness of (, using Davis’ and Holder’s inequalities, we obtain

Fg(v) < C'(Al(v) + AQ(U))

for v € Vzl, with a constant C' independent of € and v, where

= ! “y 2 2) ds)'/?
—E(/0 /Zw" o ) uldz) ds)V?,

/ /\%ZT” vs, 0)|? u(dz) ds)/2.

Due to Assumptions 2.3 and 2.4 by Lemma 3.1 we have

and

1/2
)< i / | #@lnliylelt, ndz)as) " < Clolylels,
for i = 1,2 with constants C' and C’ independent of v and . Consequently, F3 € V},*. In
the same way we obtain F' € Vzlj* fori=1,2,3. O

Lemma 6.4. For eachi1=1,2,3
lim sup [(F!— F%)(v)|=0. (6.24)
e—0 |1)‘ 1<1

Proof. We define the functionals R’ for i = 1,2,...,7 in the same way as R’ are defined in

(6.22), but with a,b, ¢, &, 7, A* and A7 in place of a€ bE), &) £ ple) (X)) and (A7),
respectively. To prove F! — F! strongly in Vl , we notlce that

|F(v) v)] <Z\RZ R (v)| forvGV;l,.
Since (¢ is bounded, for a constant N mdependent of v and &, we have
3
|RL(v) = R'(v)| < N> Qi(v)
i=1
for all ¢ > 0 with

1 — ’ . eij —q¥ ,
Qi) =E [Djv(s, 2)l[a* (s, ) — 0 (s, 2) | Digp()| da s,
0 JR4

T
2(p) = v(s, 2)|[0°E) (s, 2) — b (s, 2)|| Dipo(z)| da ds,
Q) =8 [ [ o6 )lFOs.0) = F(s,0)| Dipla)]| dod



INTEGRO-DIFFERENTIAL EQUATIONS 33

T
QW =E [ [ [os,2)]d)(s,2) s, [p(o)] dods.
0 JRrd
By Holder’s inequality and well-known properties of mollifications

sup Ql(v) < Nelplgy fori=1,2,3

V|1 <1
| |V11,—

with a constant N = N(K,d), where ¢ = p/(p — 1). Hence we get

lim sup |(R.— R")(v)| = 0. (6.25)
e—0 |’U| ;<1
for ¢ = 1. Clearly,
|R2(v) — R*(v)| < H.(v) + HZ(v) (6.26)

with

1 T
H (v) = /0 /0 /Z (1€ = 105, Tgrcer) — v(s)], | Deg]) (=) ds d,

1 T
H2(v) = /0 /0 /Z (110(5, Typ0er) — (5, 700)], | D) u(dz) dis .

Note that [(®) — | < e7j for all t € [0,T], 2 € R, 2 € Z and £ > 0. Moreover, by Taylor’s
formula, Minkowski’s inequality and Corollary 3.4

1
[v(s, Tgper) — v(s)lz, < ﬁ/o [Dv(s, Tygye) |z, d9 < N7j|Do(s)|L,,

1
[0(s, Tgy)) = v(s: 7o)z, < /0 17 =0l Dv(s, (1 = 9)7g,) +9799) |, 4

< Nen|Du(s)|r,

for s € [0,T], z € Z, w € Q and ¢ € (0,e9), with a constant N = N(K,d,p). Hence by
Holder’s inequality we have

H' < aN\v\V})\Dgo\Lq/ 7 (2)u(dz) = ENKglv\V}JDcp\Lq for i = 1,2 and ¢ € (0, ¢p),
z
which by virtue of (6.26) proves (6.25) for i = 2. We can prove similarly (6.25) for ¢ =

3,4,5,6,7, which proves F} — F! strongly. By the boundedness of ¢ and using Davis’ and
Hoélder’s inequalities we have

2 2 4 er T 2 1/2
F2(0) = F0)] < CB( | (M7, = Miv, ) ds)P)

T 00 1/2
<cB( [ S0 —otliDu. o)) ds)
r=1

T > 1/2
+oB( [ 3208 = Ailiud. ol ds)
r=1

< C(AL(v) + AZ(v))
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for v € V}) and integers k > 1 with a constant C independent of v and &, where

A = B( [ 1Duft o~ oclgl,)
and T
A20) = B[l 189 = Bullel, )
with ¢ = p/(p — 1). By standard properties of mollification
01 — o] + 185 — Bi| < Ne
for all e > 0 and (z,¢,w) € Hy x  with a constant N = N(K,d). Thus,
sup AL(v) < ENT(p_2)/2p\<p]Lq fori=1,2

v|,1 <1
| |V11,7

with ¢ = p/(p—1) and a constant N = N(K,d). Consequently, letting here ¢ — 0 we obtain
(6.24) for i = 2. By the boundedness of ¢, using Davis’ inequality we get

|[F2(v) = Fo(v)| < C(BL(v) + BZ(v))

for v € V}) with a constant C independent of ¢ and v, where

r g 1/2
B(v) :E(/ / \(I”()US—I”vs,tp)\Qu(dz)ds>
0 Z
and ) T (5) © 9 1/2
Bi(v) = E(/o /Z |(Vs 2T vs — 75,0, )| p(dz) ds) .

Notice that by Taylor’s formula

1
(10— o) = [ [ a2 a) (2@ = o )l b o
where v; := D;v and
Xi(s,2,@) i= @+ 00 () + (1= O)n z(2)
for # € (0,1), e > 0 and (s,z,w) € [0,T] x Z x Q. By Corollary 3.4 there are positive

constants g9 and M = M(K,d, m) such that the function xj(s, z, -) is a C™-diffeomorphism
on R? for every ¢ € (0,50), 0 € (0,1), w € Q,t€[0,T] z € Z, and

IDX5(s,z,2)| < M and M~' < |det Dx§(s, 2, )|
for all (x,s,2z,w) € Hp x Z x ). Due to Assumption 2.3 we have
\ngi(az) —nsz(x)] <en(z) foralle >0 and (s,z,w,2) € Hr x Q x Z.
Thus using Hoélder’s inequality we get

B <E( [ [ [ 1Dt D et 27 na) avas)

< Celolr, |vlvi|7lc, (6.27)
with a constant C' independent of € and v. Furthermore we notice that by Assumption 2.4

) (@) = 7s,2(2)] < Nen(z)
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with a constant N = N(K,d) for all e > 0 and (s, z,w, z) € Hp x Q x Z. Hence, in a similar
way as the estimate of Bl(v) is obtained, we can show

B2(v) < Celilp, vl (6.28)

with a constant C' independent of ¢ and v. Hence, combining (6.27) and (6.28) we get (6.24)
for i = 3. O

Since F! — F' strongly in Vll)* as € — 0 and u®* — u weakly in V; as € — 0, we have

lim F(u™)=F(u), lim Fi(u*) = F'(u) for i=1,2,3.
—00

k—o00

By well-known properties of mollifications and using Lemma 3.5 it is easy to show

T T
lim E/O G (R, ) dt:E/O G(¥,p)dt

k—o0

T t T t
lim B / / G e asdr =B [ [ Gifag)dsa
k—oo 0 0
T t
lim E / G / ey dutit=E [ [ (ghe)dul an
k—o0 0 0

len;OE/ gt// hER) o) 7 (dz, ds) dt = E/ gt// s ) T(dz, ds) dt.

Hence, taking k — oo in equation (6.21) we get

T T T t
E/O ctmt,so)dt:E/o ct(w,wdtw/o gt/owus,@dsdt

T t T t
+E/ Ct/(fs,w)dsdtJrE/ <t/<M;us+g§,so>dsdt
0 0 0 0

and

T t
+ E/ Ct / / (Inus + ’Ys,zTn'Ujs + hs, QO) 7~F(d2’, dS) dt
0 0 JZ

for every bounded well-measurable process ¢ and every ¢ € C§°, which implies that for every
¢ € C§° equation (1.1) holds P ® dt almost everywhere. Hence, by Lemma 3.10 v has an L,-
valued cadlag modification, denoted also by u, which is a generalised solution to (1.1)-(1.2).
Moreover, from (6.19) we obtain

’U‘Vﬁ,p < hgm_i,%f ‘usk‘Vgp < N(|1p|\pg + |f’H$ + |g|HZ+1(l2) + |h|Hg+i(£p72))

forn =0,1,...,m for every integer r > 1 with a constant N = N(d,p,m, T, K, K¢, Kj;), where
i =1 when p =2 and i = 2 for p > 2. Letting here r — 0o we obtain

Eess sup lug ¥ o < N(E|p2 " + EK (T)) (6.29)
tel0,T

for n = 0,1,2,...m with a constant N = N(d,p,m,T, K, K¢ K 7). We already know that u
is and Lj-valued cadlag process. Hence, applying Lemma 3.12 with V = H*, U = H, 0 and
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we obtain that u is weakly cadlag as an H)'-valued process, and we can change the essential
supremum into supremum in (6.29), i.e.,
E sup |ulyn < N(E|ly, + EKS (T)) forn=0,1,2,...,m. (6.30)
te[0,T] P P
Thus we can also see that u is strongly cadlag as an Hg%l—valued process. To dispense with

Assumption 6.1 we take a non-negative function x € C§°(R?) such that x(z) = 1 for |z| < 1
and x(x) = 0 for |z| > 2, and for integers n > 1 define

(@) = p(@)xn(@),  [fi'(@,2) = fi(z, 2)xn(@),

9" (x) = g; (®)xn(x),  hi(z,2) = Mz, 2)xn(2)
for all t € [0,T], x € RY, z € Z, where x,(z) = x(x/n). Then for each n there is a unique
generalised solution u" = (uf');c[o,7] to equation (1.1)-(1.2) with o™, f, g" and h" in place
of ¥, f, g and h, respectively. Moreover by (6.30)

T
Esup |uf —ubb,, < NE[Y" — ', + NE/ VA -
t<T P P 0 P

T
n __ 1p n __ 3lp n_ pl|p
+NE/0 _Hgs g |H;n+1(l2) + ’hs hs Hy+l(ﬁp,2) + 1p>2‘hs hs H;n_,,_Q(Lp’Q) dS

with a constant N = N(d,p,m, T, K, K, Kj). Letting here [,n — oo we get
lim Esup |ul —u|?,, =0.
nl—oo  <T P
Consequently, there is an H'-valued adapted process u = (ut)sc[o,r) such that for a subse-

quence n' — oo we have sup;<r \u?/ — Uy my — 0 almost surely. Hence u is an H;@_l—valued
cadlag process, and it is easy to show that it is a generalised solution to (1.1)-(1.2), such that
(6.30) holds and w is weakly cadlag as an Hp"-valued process.

The next theorem extends the above result to equation (1.1)-(1.2) with R satisfying As-
sumption 2.5.

Theorem 6.5. Let Assumptions 2.1 through 2.6 hold with an integer m > 1 and a real
number p > 2. Assume also (6.16). Then equation (1.1)-(1.2) has a unique generalised
solution u, such that u is an H}"-valued weakly cadlag process, salisfying estimate (6.30),
and it is cadlag as an Hg‘_l—valued Process.

Proof. We use the standard method of continuity, see, e.g., [23]. For A € [0,1], we consider
the equation
dut = (A?ut + )\Rtut_ + ft) dt + ( :Ut + g;) dw{

+/ (I"ut_ + ’YtTnUt_ + ht) 7~T(d2’, dt) (631)
Z
for (t,z) € Hr with initial condition

up =1, (6.32)
where A = L, —i—./\/'f + N for every t € [0, T]. We look for a solution u from the space ;"

of Fi-adapted H"-valued weakly cadlag processes which are strongly cadlag as H, ;”_l—valued
processes such that |ul},., = Esupy<rp |uilym < oo. Notice that H," is a Banach space. If
p - p
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u € Hy' is a generalised solution to (6.31), then by Assumption 2.5 and estimate (6.30) we
have

¢
Esup |us|h, < NE[YE,, +NE/ AR sus— [ + NEKY (T)
s<t p p 0 p ’

t

< NE|W¥,, + NK | Esup|u|ynds forn=0,1,...,m
P 0 'I‘SS p

with a constant N = N(m,d,p, T, K, Ke, K3). Hence by Gronwall’s lemma we have estimate
(6.30) for u. Let A denote the set of A € [0, 1] such that for any ¢ € W' = L,(Q, Fo; H,"),
feHy, g e HM(1?) and h € H'""(L,2), with i = 1 when p = 2 and i = 2 when p > 2,
equation (6.31)-(6.32) has a unique generalised solution in #". Clearly 0 € A, and we need
to prove 1 € A. To this end, it suffices to show that there is an § > 0 such that for any
Ao €A,
[Ao — 0, Ao + 0] N[0, 1] € A.

Fix Ao € A, € V', f € HY, g € Hg”l(ﬁ) and h € H'(L,2). For v € HJ' and X € [0,1]
we consider the equation

dug = (Afug + MoReur— + (A = Xo)Ryve— + fi) dt + (Mjug + gf) dwyf

4 [ (P T+ ) i)
Z

for (t,x) € Hp, with initial condition uy = 1. Since A\g € A, this problem has a unique
generalised solution u € H". Define the operator Q) by u = Q)v. Then Q) maps H," into

itself, and A € A if and only if there is a fixed point of Q. If v* € H,' and ut = Q' for

i =1,2, then for u:= u® — u' we have

dus = (AVus + MNoRyur— + (A — o) Re(v? — v})) dt + Miug dw?

+/u%t+%wm>ﬂw@m (t,2) € Hr,

z

with ug = 0. Hence, using estimate (6.30) for u, due to Assumption 2.5 on R we get
Qa0 = Qav' g < NIA = Xo|[R(0? = 0")|agm < N'IA = Xo[0? — v oy

with constants N and N’ depending only on m,d,p, T, K, K¢ and Kj. Taking 6 = (2N")~1
we obtain that @) is a contraction mapping on H;" if A € [Ag—4, Ao+6]N[0, 1]. Consequently,
(6.31) has a unique solution u in H,", and it satisfies (6.30). O

If m > 1 is not an integer, then we set §# = m — |m] and by Theorem 4.1 we have
e

[H;L)mj+1(l2)aH;EmHl(l2)]9 = H" (1), [H;L)mj—i_i(‘cpﬂ)aHzl—ym-|+i(£p,2)]0 =H'S ' (Lp2)
fori=1,2, and
U = [ulm [Um)ﬂ] p

7‘7p ’
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for integers r > 1. If Assumptions 2.1 through 2.6 with m > 1 hold then we have shown above
that the solution operator S, which maps the data (1, f, g, h) into the generalised solution u
of (1.1)-(1.2), is continuous from

vl x|l < U (1) < BT

to IU[L),TJ, and fI'OHI
m m m|+ m|+i
\I’ZE 1 X HZ’—) 1 X HL 1 1([2) X H}LQ]

to [UK?W, for ¢ = 1 when p = 2 and for ¢ = 2 when p > 2, with operator norms bounded by a
constant N = N(d,p,m, T, K, K¢, Kj). Hence by Theorem 4.1 (i) we have

ully < N(BJlEy, + B, (1))
with a constant N = (p,d,m, T, K, Ky). In the same way we get
lults < N(E|ply. + EKE (T)) for any s € [0, m)].
P p ?

Now, like before, letting here r — oo we obtain (6.29) for real numbers s € [0,m], and using
Lemma 3.12 we get that u is an H,"-valued weakly cadlag process such that (6.30) holds for
any s € [0,m]. Taking into account that u is a strongly cadlag Ly-valued process and using
the interpolation inequality Theorem 4.1(v) with Ag := L, and Ay := H}", we get that u is
strongly cadlag as an Hj-valued process for every real number s < m.

Finally we can prove estimate (2.6) for ¢ € (0,p) by applying Lemma 3.11 in the same way
as it is used in [16] to prove the corresponding supremum estimate therein.
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