15 research outputs found

    Towards safe and efficient application of deep neural networks in resource-constrained real-time embedded systems

    No full text
    We consider real-time safety-critical systems that feature closed-loop interactions between the embedded computing system and the physical environment with a sense-compute-actuate feedback loop. Deep Learning (DL) with Deep Neural Networks (DNNs) has achieved success in many application domains, but there are still significant challenges in its application in real-time safety-critical systems that require high levels of safety certification under significant hardware resource constraints. This thesis considers the following overarching research goal: How to achieve safe and efficient application of DNNs in resource-constrained Real-Time Embedded (RTE) systems in the context of safety-critical application domains such as Autonomous Driving? Towards reaching that goal, this thesis presents a set of algorithms and techniques that aim to address three Research Questions (RQs): RQ1: How to achieve accurate and efficient Out-of-Distribution (OOD) detection for DNNs in RTE systems? RQ2: How to predict the performance of DNNs under continuous distribution shifts? RQ3: How to achieve efficient inference of Deep Reinforcement Learning (DRL) agents in RTE systems? For RQ1, we present a framework for OOD detection based on outlier detection in one or more hidden layers of a DNN with either Isolation Forest (IF) or Local Outlier Factor (LOF). We also perform a comprehensive and systematic benchmark study of multiple well-known OOD detection algorithms in terms of both accuracy and execution time on different hardware platforms, in order to provide a useful reference for the practical deployment of OOD detection algorithms in RTE systems. For RQ2, we present a framework for predicting the performance of DNNs for end-to-end Autonomous Driving under continuous distribution shifts with two approaches: using an Autoencoder that attempts to reconstruct the input image; and applying Anomaly Detection algorithms to the hidden layer(s) of the DNN. For RQ3, we present a framework for model compression of the policy network of a DRL agent for deployment in RTE systems by leveraging the relevance scores computed by Layer-wise Relevance Propagation (LRP) to rank and prune the convolutional filters, combined with fine-tuning using policy distillation. The algorithms and techniques developed in this thesis have been evaluated on standard datasets and benchmarks. To summarize our findings, we have developed novel OOD detection algorithms with high accuracy and efficiency; identified OOD detection algorithms with relatively high accuracy and low execution times through benchmarking; developed a framework for DNN performance prediction under continuous distribution shifts, and identified most effective Anomaly Detection algorithms for use in the framework; developed a framework for model compression of DRL agents that is effective in reducing model size and inference time for deployment in RTE systems. The research results are expected to assist system designers in the task of safe and efficient application of DNNs in resource-constrained RTE systems

    Towards safe and efficient application of deep neural networks in resource-constrained real-time embedded systems

    No full text
    We consider real-time safety-critical systems that feature closed-loop interactions between the embedded computing system and the physical environment with a sense-compute-actuate feedback loop. Deep Learning (DL) with Deep Neural Networks (DNNs) has achieved success in many application domains, but there are still significant challenges in its application in real-time safety-critical systems that require high levels of safety certification under significant hardware resource constraints. This thesis considers the following overarching research goal: How to achieve safe and efficient application of DNNs in resource-constrained Real-Time Embedded (RTE) systems in the context of safety-critical application domains such as Autonomous Driving? Towards reaching that goal, this thesis presents a set of algorithms and techniques that aim to address three Research Questions (RQs): RQ1: How to achieve accurate and efficient Out-of-Distribution (OOD) detection for DNNs in RTE systems? RQ2: How to predict the performance of DNNs under continuous distribution shifts? RQ3: How to achieve efficient inference of Deep Reinforcement Learning (DRL) agents in RTE systems? For RQ1, we present a framework for OOD detection based on outlier detection in one or more hidden layers of a DNN with either Isolation Forest (IF) or Local Outlier Factor (LOF). We also perform a comprehensive and systematic benchmark study of multiple well-known OOD detection algorithms in terms of both accuracy and execution time on different hardware platforms, in order to provide a useful reference for the practical deployment of OOD detection algorithms in RTE systems. For RQ2, we present a framework for predicting the performance of DNNs for end-to-end Autonomous Driving under continuous distribution shifts with two approaches: using an Autoencoder that attempts to reconstruct the input image; and applying Anomaly Detection algorithms to the hidden layer(s) of the DNN. For RQ3, we present a framework for model compression of the policy network of a DRL agent for deployment in RTE systems by leveraging the relevance scores computed by Layer-wise Relevance Propagation (LRP) to rank and prune the convolutional filters, combined with fine-tuning using policy distillation. The algorithms and techniques developed in this thesis have been evaluated on standard datasets and benchmarks. To summarize our findings, we have developed novel OOD detection algorithms with high accuracy and efficiency; identified OOD detection algorithms with relatively high accuracy and low execution times through benchmarking; developed a framework for DNN performance prediction under continuous distribution shifts, and identified most effective Anomaly Detection algorithms for use in the framework; developed a framework for model compression of DRL agents that is effective in reducing model size and inference time for deployment in RTE systems. The research results are expected to assist system designers in the task of safe and efficient application of DNNs in resource-constrained RTE systems

    Utilization Quality Evaluation and Barrier Factor Diagnosis of Rural Residential Areas in Agricultural Regions of the Northeast Plain: A Case Study of Wangkui County, Heilongjiang Province, China

    No full text
    Conducting quality evaluations of rural residential areas and effectively improving their utilization levels is an important aspect of correctly handling the relationship between humans and the land and achieving high-quality rural developments. Taking Wangkui County, Heilongjiang Province, as an example, this study aimed to achieve the “intensive, humanistic, and green” development of rural residential areas. An evaluation index system of utilization quality was constructed using three aspects: intensive land utilization, human settlement environment quality, and ecological environment quality. The comprehensive evaluation results were classified using a multidimensional combination matrix and targeted optimization plans were proposed. Additionally, an obstacle diagnosis model was constructed to identify the factors that hinder the high-quality utilization of rural residential areas. The results demonstrated the following: (1) The utilization quality of the rural residential areas in the study area was mainly at a medium level, followed by low and high levels, with proportions of 20.18%, 51.38%, and 28.44%, respectively. The utilization levels gradually decreased from the town centers to the surrounding areas. (2) Based on the evaluation results, there were 23 combinations of rural residential areas in the study area, which were classified into four types: coordinated control, key development, single leading, and transforming and upgrading. Optimization plans were proposed for the different types. (3) From the perspective of identifying the barrier factors, the top five factors that hindered the high-quality utilization of rural residential areas were the traffic land density, aggregation index, green-coverage rate of built-up areas, completeness of public service facilities, and the proportion of secondary and tertiary industrial land area. This study provides a significant reference for the evaluation of the utilization quality of rural residential areas in plain agricultural regions to effectively raise their levels of intensive land utilization, improve their settlement environments, enhance their ecological quality, and achieve a development of high quality

    Efficient performance prediction of end-to-end autonomous driving under continuous distribution shifts based on anomaly detection

    No full text
    A Deep Neural Network (DNN)’s prediction may be unreliable outside of its training distribution despite high levels of accuracy obtained during model training. The DNN may experience different degrees of accuracy degradation for different levels of distribution shifts, hence it is important to predict its performance (accuracy) under distribution shifts. In this paper, we consider the end-to-end approach to autonomous driving of using a DNN to map from an input image to the control action such as the steering angle. For each input image with possible perturbations that cause distribution shifts, we design a Performance Prediction Module to compute its anomaly score, and use it to predict the DNN’s expected prediction error, i.e., its expected deviation from the ground truth (optimal) control action, which is not available after deployment. If the expected prediction error is too large, then the DNN’s prediction may no longer be trusted, and remedial actions should be taken to ensure safety. We consider different methods for computing the anomaly score for the input image, including using the reconstruction error of an Autoencoder, or applying an Anomaly Detection algorithm to a hidden layer of the DNN. We present performance evaluation of the different methods in terms of both prediction accuracy and execution time on different hardware platforms, in order to provide a useful reference for the designer to choose among the different methods.Originally included in thesis in manuscript form. </p

    Aberrant Regulation of mRNA m6A Modification in Cancer Development

    No full text
    N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic messenger RNAs (mRNAs). The m6A modification in RNA can be catalyzed by methyltransferases, or removed by demethylases, which are termed m6A writers and erasers, respectively. Selective recognition and binding by distinct m6A reader proteins lead mRNA to divergent destinies. m6A has been reported to influence almost every stage of mRNA metabolism and to regulate multiple biological processes. Accumulating evidence strongly supports the correlation between aberrant cellular m6A level and cancer. We summarize here that deregulation of m6A modification, resulting from aberrant expression or function of m6A writers, erasers, readers or some other protein factors, is associated with carcinogenesis and cancer progression. Understanding the regulation and functional mechanism of mRNA m6A modification in cancer development may help in developing novel and efficient strategies for the diagnosis, prognosis and treatment of human cancers

    LRP-based network pruning and policy distillation of robust and non-robust DRL agents for embedded systems

    No full text
    Reinforcement learning (RL) is an effective approach to developing control policies by maximizing the agent's reward. Deep reinforcement learning uses deep neural networks (DNNs) for function approximation in RL, and has achieved tremendous success in recent years. Large DNNs often incur significant memory size and computational overheads, which may impede their deployment into resource-constrained embedded systems. For deployment of a trained RL agent on embedded systems, it is necessary to compress the policy network of the RL agent to improve its memory and computation efficiency. In this article, we perform model compression of the policy network of an RL agent by leveraging the relevance scores computed by layer-wise relevance propagation (LRP), a technique for Explainable AI (XAI), to rank and prune the convolutional filters in the policy network, combined with fine-tuning with policy distillation. Performance evaluation based on several Atari games indicates that our proposed approach is effective in reducing model size and inference time of RL agents. We also consider robust RL agents trained with RADIAL-RL versus standard RL agents, and show that a robust RL agent can achieve better performance (higher average reward) after pruning than a standard RL agent for different attack strengths and pruning rates

    Out-of-Distribution Detection for Deep Neural Networks with Isolation Forest and Local Outlier Factor

    No full text
    Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their excellent performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands if it is used for planning and control. One common cause for such unpredictable mistakes is Out-of-Distribution (OOD) input samples, i.e., samples that fall outside of the distribution of the training dataset. We present a framework for OOD detection based on outlier detection in one or more hidden layers of a DNN with a runtime monitor based on either Isolation Forest (IF) or Local Outlier Factor (LOF). Performance evaluation indicates that LOF is a promising method in terms of both the Machine Learning metrics of precision, recall, F1 score and accuracy, as well as computational efficiency during testing

    Timing performance benchmarking of out-of-distribution detection algorithms

    No full text
    In an open world with a long-tail distribution of input samples, Deep Neural Networks (DNNs) may make unpredictable mistakes for Out-of-Distribution (OOD) inputs at test time, despite high levels of accuracy obtained during model training. OOD detection can be an effective runtime assurance mechanism for safe deployment of machine learning algorithms in safety–critical applications such as medical imaging and autonomous driving. A large number of OOD detection algorithms have been proposed in recent years, with a wide range of performance metrics in terms of accuracy and execution time. For real-time safety–critical applications, e.g., autonomous driving, timing performance is of great importance in addition to accuracy. We perform a comprehensive and systematic benchmark study of multiple OOD detection algorithms in terms of both accuracy and execution time on different hardware platforms, including a powerful workstation and a resource-constrained embedded device, equipped with both CPU and GPU. We also profile and analyze the internal details of each algorithm to identify the performance bottlenecks and potential for GPU acceleration. This paper aims to provide a useful reference for the practical deployment of OOD detection algorithms for real-time safety–critical applications
    corecore