24 research outputs found

    Doc-GCN: Heterogeneous Graph Convolutional Networks for Document Layout Analysis

    Full text link
    Recognizing the layout of unstructured digital documents is crucial when parsing the documents into the structured, machine-readable format for downstream applications. Recent studies in Document Layout Analysis usually rely on computer vision models to understand documents while ignoring other information, such as context information or relation of document components, which are vital to capture. Our Doc-GCN presents an effective way to harmonize and integrate heterogeneous aspects for Document Layout Analysis. We first construct graphs to explicitly describe four main aspects, including syntactic, semantic, density, and appearance/visual information. Then, we apply graph convolutional networks for representing each aspect of information and use pooling to integrate them. Finally, we aggregate each aspect and feed them into 2-layer MLPs for document layout component classification. Our Doc-GCN achieves new state-of-the-art results in three widely used DLA datasets.Comment: Accepted by COLING 202

    An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers

    Get PDF
    Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Fatty Acids Regulate Porcine Reproductive and Respiratory Syndrome Virus Infection via the AMPK-ACC1 Signaling Pathway

    No full text
    Lipids play a crucial role in the replication of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine virus that is endemic throughout the world. However, little is known about the effect of fatty acids (FAs), a type of vital lipid, on PRRSV infection. In this study, we found that treatment with a FA biosynthetic inhibitor significantly inhibited PRRSV propagation, indicating the necessity of FAs for optimal replication of PRRSV. Further study revealed that 5&prime;-adenosine monophosphate (AMP)-activated protein kinase (AMPK), a key kinase antagonizing FA biosynthesis, was strongly activated by PRRSV and the pharmacological activator of AMPK exhibited anti-PRRSV activity. Additionally, we found that acetyl-CoA carboxylase 1 (ACC1), the first rate-limiting enzyme in the FA biosynthesis pathway, was phosphorylated (inactive form) by PRRSV-activated AMPK, and active ACC1 was required for PRRSV proliferation, suggesting that the PRRSV infection induced the activation of the AMPK&ndash;ACC1 pathway, which was not conducive to PRRSV replication. This work provides new evidence about the mechanisms involved in host lipid metabolism during PRRSV infection and identifies novel potential antiviral targets for PRRSV

    Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2

    No full text
    SARS-CoV-2 is responsible for several million deaths to date globally, and both fomite transmission from surfaces as well as airborne transmission from aerosols may be largely responsible for the spread of the virus. Here, nanoparticle coatings of three antimicrobial materials (Ag, CuO and ZnO) are deposited on both solid flat surfaces as well as porous filter media, and their activity against SARS-CoV-2 viability is compared with a viral plaque assay. These nanocoatings are manufactured by aerosol nanoparticle self-assembly during their flame synthesis. Nanosilver particles as a coating exhibit the strongest antiviral activity of the three studied nanomaterials, while copper oxide exhibits moderate activity, and zinc oxide does not appear to significantly reduce the virus infectivity. Thus, nanosilver and copper oxide show potential as antiviral coatings on solid surfaces and on filter media to minimize transmission and super-spreading events while also providing critical information for the current and any future pandemic mitigation efforts

    Vagococcus fluvialis isolation from the urine of a bladder cancer patient: a case report

    No full text
    Abstract Vagococcus fluvialis infection is rare in humans, and there is limited research on the clinical manifestations and antimicrobial susceptibility testing of Vagococcus fluvialis infection. Here, We isolated Vagococcus fluvialis from the urine samples of bladder cancer patients at Hunan Provincial People’s Hospital, and it is the first reported case of Vagococcus fluvialis isolated from the urine. The fully automated microbial identification system and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identified the bacterium as Vagococcus fluvialis with a confidence level of 99.9%. The VITEK-2Compact fully automated microbial susceptibility analysis system indicated that it was most sensitive to tigecycline, vancomycin, quinupristin/dalfopristin, linezolid, and showed moderate sensitivity to erythromycin, levofloxacin, ciprofloxacin, ampicillin/sulbactam, and tetracycline. Additionally, it exhibited synergy when combined with high-level gentamicin and vancomycin, showing sensitivity. However, it displayed poor activity against penicillin and furanth. According to our knowledge, this is the first study to isolate and identify Vagococcus fluvialis from the urine of bladder cancer patients and the systematically reviewed other reported Vagococcus infections on human, which provide an experimental basis for guiding the rational use of drugs in the clinical treatment and diagnose of Vagococcus fluvialis infection and related pathogenic mechanism research. Meanwhile, we have systematically reviewed other reported

    Arabidopsis sucrose transporter 4 (AtSUC4) is involved in high sucrose-mediated inhibition of root elongation

    No full text
    AbstractSucrose transporters (SUCs/SUTs) play crucial roles in apoplast transport and long-distance distribution of sucrose throughout the whole plant. However, whether and how the Arabidopsis AtSUC4 modulates sucrose import from apoplast to cytosol remains unclear. In the present study, we found that AtSUC4 protein was localized to the plasma membrane in the root. Expression of AtSUC4 in roots was gradually induced with the increasing sucrose concentrations (0%, 2%, 4% and 6%). When feeding high concentrations (4% and 6%) of sucrose, the primary root growth of seedling was inhibited. Interestingly, atsuc4 mutants exhibited longer primary root than the wild type under these conditions, indicating that atsuc4 mutants were less sensitive to excess sucrose. Moreover, the root of atsuc4 mutants accumulated less sucrose and abscisic acid (ABA) and more indole-3-acetic acid (IAA) on 4% and 6% sucrose supplementation. Transcriptomic analysis revealed that numerous genes associated with sugar transport and metabolism, as well as ABA signalling were down-regulated, whereas many IAA signaling-related genes were up-regulated in mutant plants relative to the wild type under 6% sucrose treatment. Collectively, our finding demonstrated that the deficiency of AtSUC4 reduced the inhibition of primary root growth under high sucrose condition, probably through reducing the sucrose transportation and metabolism, and subsequent alteration in IAA and ABA signalling

    Comparison of processing technology on quality of “Laba” garlic products

    No full text
    In order to comparison of processing technology on quality of “Laba” garlic products, the garlic was dipped in acetic acid and fumigated by acetic acid with carbon dioxide, CO2, respectively, until became green. The pigment formation, texture characteristics, and bioactivities of “Laba” garlic was investigated. Garlic fumigated by acetic acid with 80% CO2 exhibited the most discoloration, while the hardness and pigment bioavailability of garlic fumigated by acetic acid with 20% CO2 presented the highest value. Correlation test showed that scavenging rate of DPPH· of garlic products is highly dependent on allicin content, while showed a good negative correlation between allicin content and blue, yellow pigments. Though formation of new pigments, the scavenging rate of DPPH· decreased indicating that pigments of “Laba” garlic exhibited much poorer clearance rate of DPPH· than allicin. In summary, “Laba” garlic fumigated with acetic acid and 20% CO2 showed the best quality
    corecore