20 research outputs found

    THz generation using a reflective stair-step echelon

    Full text link
    We present a novel method for THz generation in lithium niobate using a reflective stair-step echelon structure. The echelon produces a discretely tilted pulse front with less angular dispersion compared to a high groove-density grating. The THz output was characterized using both a 1-lens and 3-lens imaging system to set the tilt angle at room and cryogenic temperatures. Using broadband 800 nm pulses with a pulse energy of 0.95 mJ and a pulse duration of 70 fs (24 nm FWHM bandwidth, 39 fs transform limited width), we produced THz pulses with field strengths as high as 500 kV/cm and pulse energies as high as 3.1 μ\muJ. The highest conversion efficiency we obtained was 0.33%. In addition, we find that the echelon is easily implemented into an experimental setup for quick alignment and optimization.Comment: 19 pages, 4 figure

    Techniques for combining fast local decoders with global decoders under circuit-level noise

    Full text link
    Implementing algorithms on a fault-tolerant quantum computer will require fast decoding throughput and latency times to prevent an exponential increase in buffer times between the applications of gates. In this work we begin by quantifying these requirements. We then introduce the construction of local neural network (NN) decoders using three-dimensional convolutions. These local decoders are adapted to circuit-level noise and can be applied to surface code volumes of arbitrary size. Their application removes errors arising from a certain number of faults, which serves to substantially reduce the syndrome density. Remaining errors can then be corrected by a global decoder, such as Blossom or Union Find, with their implementation significantly accelerated due to the reduced syndrome density. However, in the circuit-level setting, the corrections applied by the local decoder introduce many vertical pairs of highlighted vertices. To obtain a low syndrome density in the presence of vertical pairs, we consider a strategy of performing a syndrome collapse which removes many vertical pairs and reduces the size of the decoding graph used by the global decoder. We also consider a strategy of performing a vertical cleanup, which consists of removing all local vertical pairs prior to implementing the global decoder. Lastly, we estimate the cost of implementing our local decoders on Field Programmable Gate Arrays (FPGAs).Comment: 28 pages, 24 figures. Comments welcome! V2 Contains a more detailed FPGA analysi

    Direct experimental visualization of waves and band structure in 2D photonic crystal slabs

    Get PDF
    We demonstrate for the first time the ability to perform time resolved imaging of terahertz (THz) waves propagating within a photonic crystal (PhC) slab. For photonic lattices with different orientations and symmetries, we used the electro-optic effect to record the full spatiotemporal evolution of THz fields across a broad spectral range spanning the photonic band gap. In addition to revealing real-space behavior, the data let us directly map the band diagrams of the PhCs. The data, which are in good agreement with theoretical calculations, display a rich set of effects including photonic band gaps, eigenmodes and leaky modes.National Science Foundation (U.S.) (Grant no. 1128632)National Science Foundation (U.S.) (NSF GRFP Fellowship)Canadian Institutes of Health Research (Fellowship

    The homogenization limit and waveguide gradient index devices demonstrated through direct visualization of THz fields

    Get PDF
    Electromagnetic homogenization approximation calculates an effective refractive index of a composite material as a weighted average of its components, and has found uses in gradient refractive index and transformation optics devices. However, the utility of the homogenization approximation is hindered by uncertainty in its range of applicability. Harnessing the capability of time-resolved imaging provided by the terahertz polaritonics platform, we determined the dispersion curves of slab waveguides with periodic arrays of holes, and we quantified the breakdown of the homogenization approximation as the period approached the terahertz wavelength and the structure approached the photonic bandgap regime. We found that if the propagation wavelength in the dielectric waveguide was at least two times as large as the Bragg condition wavelength, the homogenization approximation held independent of the detailed geometry, propagation direction, or fill fraction. This value is much less demanding than the estimate of 10:1 often assumed for homogenization. We further used the experimental capabilities to extract the effective refractive index of the photonic crystals in the homogenization approximation limit, and we used this to analyze the predictive strength of analytical formulas. These formulas enabled rapid design of a Luneburg lens and a bi-directional cloak in a waveguide platform without the need for numerical simulations. Movies of terahertz waves interacting with these structures, which were fabricated using femtosecond laser machining, reveal excellent performance. The combination of an analytical formula and confidence in the homogenization approximation will aid in fast design and prototyping of gradient index devices.National Science Foundation (U.S.) (Grant 1128632)HDTRA Grant (1-12-1-0008)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    OpenQASM 3: a broader and deeper quantum assembly language

    Get PDF
    Quantum assembly languages are machine-independent languages that traditionally describe quantum computation in the circuit model. Open quantum assembly language (OpenQASM 2) was proposed as an imperative programming language for quantum circuits based on earlier QASM dialects. In principle, any quantum computation could be described using OpenQASM 2, but there is a need to describe a broader set of circuits beyond the language of qubits and gates. By examining interactive use cases, we recognize two different timescales of quantum-classical interactions: real-time classical computations that must be performed within the coherence times of the qubits, and near-time computations with less stringent timing. Since the near-time domain is adequately described by existing programming frameworks, we choose in OpenQASM 3 to focus on the real-time domain, which must be more tightly coupled to the execution of quantum operations. We add support for arbitrary control flow as well as calling external classical functions. In addition, we recognize the need to describe circuits at multiple levels of specificity, and therefore we extend the language to include timing, pulse control, and gate modifiers. These new language features create a multi-level intermediate representation for circuit development and optimization, as well as control sequence implementation for calibration, characterization, and error mitigation

    Terahertz polaritonics

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 195-206).On the terahertz (THz) polaritonics platform, ultrafast optical laser pulses are used to generate and detect THz phonon-polariton wavepackets with full spatiotemporal resolution while they are confined to a thin slab of lithium niobate (LN) or lithium tantalate (LT) that is roughly 30-100 pm thick. Polaritonics is an attractive platform for wave-based computing because of its wealth of capabilities, but still requires the study and development of some critical features before applications can be fully realized. In my thesis work, I investigated and developed two of these features: photonic structures and strong light-matter coupling. In the first phase, we developed a fabrication procedure to pattern high-aspect ratio, optical-quality air holes into slabs of LN and LT, which has been historically difficult to achieve. We then studied the nature of THz wave propagation in the slabs when the size of these air holes was either much smaller or comparable to the THz wavelength. In the long-wavelength limit, where the structures are normally approximated as homogenous media, our findings were used to determine a cutoff-wavelength for operation and design of gradient refractive index devices. In the short wavelength limit, where the structures are termed photonic crystals, our work challenged the universally used definition of the Brillouin zone and presented an alternative definition that was valuable in understanding wave propagation in periodically ordered systems. In the second phase, we demonstrated a novel form of light-matter interaction in the strong coupling regime, where phonons and magnons where strongly coupled to the electric and magnetic fields of THz light, respectively. Our experiments, performed in both waveguide and cavity geometries, conclusively proved the formation of new quasiparticles we termed magnon-phonon-polaritons. We believe our results open up the possibility of using polaritonics for facile and coherent ultrafast control and conversion between photonic, phononic, and spin degrees of freedom, and thereby provides a promising avenue through which to explore THz wave-based computing. Our cavity geometry and sensitive detection scheme should also provide a means by which to pursue the field of THz cavity quantum electrodynamics.by Prasahnt Sivarajah.Ph. D

    Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3

    No full text
    We introduce and optimize a fabrication procedure that employs both femtosecond laser machining and hydrofluoric acid etching for cutting holes or voids in slabs of lithium niobate and lithium tantalate. The fabricated structures have 3 μm lateral resolution, a lateral extent of at least several millimeters, and cut depths of up to 100 μm. Excellent surface quality is achieved by initially protecting the optical surface with a sacrificial silicon dioxide layer that is later removed during chemical etching. To optimize cut quality and machining speed, we explored various laser-machining parameters, including laser polarization, repetition rate, pulse duration, pulse energy, exposure time, and focusing, as well as scanning, protective coating, and etching procedures. The resulting structures significantly broaden the capabilities of terahertz polaritonics, in which lithium niobate and lithium tantalate are used for terahertz wave generation, imaging, and control. The approach should be applicable to a wide range of materials that are difficult to process by conventional methods.National Science Foundation (U.S.) (grant no. ECCS-1128632)National Institutes of Health (U.S.) (NSF GRFP fellowship)National Research Council Canada (Canadian Research Fellowship
    corecore