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Abstract
Electromagnetic homogenization approximation calculates an effective refractive index of a compo-
sitematerial as aweighted average of its components, and has found uses in gradient refractive index
and transformation optics devices. However, the utility of the homogenization approximation is hin-
dered by uncertainty in its range of applicability. Harnessing the capability of time-resolved imaging
provided by the terahertz polaritonics platform,we determined the dispersion curves of slabwave-
guides with periodic arrays of holes, andwe quantified the breakdown of the homogenization approx-
imation as the period approached the terahertz wavelength and the structure approached the photonic
bandgap regime.We found that if the propagationwavelength in the dielectric waveguidewas at least
two times as large as the Bragg conditionwavelength, the homogenization approximation held inde-
pendent of the detailed geometry, propagation direction, orfill fraction. This value ismuch less
demanding than the estimate of 10:1 often assumed for homogenization.We further used the experi-
mental capabilities to extract the effective refractive index of the photonic crystals in the homogeniza-
tion approximation limit, andwe used this to analyze the predictive strength of analytical formulas.
These formulas enabled rapid design of a Luneburg lens and a bi-directional cloak in awaveguide
platformwithout the need for numerical simulations.Movies of terahertz waves interacting with these
structures, whichwere fabricated using femtosecond lasermachining, reveal excellent performance.
The combination of an analytical formula and confidence in the homogenization approximationwill
aid in fast design and prototyping of gradient index devices.

1. Introduction

When appropriate conditions aremet, the homogenization approximation can simplify a complex optical
system comprised ofmultiple elements, such as an array of holes or inclusions in a host dielectric, by
approximating it as a homogenous compositematerial with an effective refractive index [1–4]. The effective
index can be continuously tuned by selecting the ‘concentration’ of the inclusionmaterial. By controlling the
spatially varying size, density, or type of inclusions, one can specify the three-dimensional (3D) index of
refraction,n x y z( , , ). This approach has foundwidespread application in the design of graded index (GRIN)
devices.When the inclusions are dielectrics ormetamaterials, GRINdevices can achieve effects such as negative
refraction [5] and can function as elements such asflat surface lenses [6] or diffraction gratings [7].When
combinedwith transformation optics [8, 9], the homogenization approximation can also be used to realize
spatial permittivity and permeabilitymapswith diverse capabilities including cloaking [10, 11], wave bending
[12], and electromagnetic wavefront rotation [13]. The great simplification of the homogenization
approximation is critical for the understanding and design of such versatile photonic components.
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Despite its widespread application, the range of applicability of the homogenization approximation has not
beenwell quantified. A necessary condition for treatment of amaterial as homogenous is that thewavelength λ
of light be sufficiently large compared to the characteristic sizeΛ of the structure or inclusion or period in a
repeating pattern [14, 15], with experiments often conductedwith λ Λ ratios of 5–10 [16–18]. Yet simulation
has shown that the homogenization regimemay extend to ratios as small as 2.3 [19]. The condition becomes
further unclear inwaveguides where thewavelength of light can be on the order of the structure or inclusion
thickness, requiring full 3D simulations to treat the geometry.With an understanding of the range of
applicability of the homogenization approximation, analytical formulas can be used instead of simulations and
can enable rapid device design and prototyping. Thismay enable successful designs in cases where fabrication
technology limits the feature size such that high λ Λ cannot be achieved. Formetamaterials (e.g. single
resonance structures), it is also important to understand the limits of the homogenization approximation since
the size of the structuremust be specified to achieve a desired resonance frequency and it is not possible tomake
the unit cell any smaller. Recently, it was observed that breakdown of homogenization occurs when the ratio is
1.78 in a 45°-rotated square lattice of air-holes embedded in a dielectric host [20], but the influence of geometry,
volumefill fraction (FF), and hostmaterial were not investigated.Here we systematically analyze the breakdown
of homogenization in a dielectric slab, and compare direct experimentalmeasurements of the effective index to
the predictionsmade using analytical theory to rapidly designGRINdevices.

We experimentally study the breakdownof the homogenization regime using the terahertz (THz)
polaritonics platform. In polaritonics, THz-frequency electromagnetic waves are generated, waveguided, and
detectedwith full spatiotemporal resolution, typically on a 30–100 μmthick slab of lithiumniobate (LN) or
lithium tantalate (LT) [21–24]. In the present work, the approach is used to accuratelymap out dispersion
curves of a diverse set of composite waveguides composed of lattices of air-holes in 50 μmthick LNor LT
waveguides (seefigure 1). The dispersion curve fully specifies the frequency-dependent refractive index of the
composite slab by relating thewavelength (orwave vector) of the propagating THz light to the corresponding
eigenfrequency. The facile ability to determine the dispersion curve is a distinctive capability of the polaritonics
platform and is fundamental to this study, since the curve shows the response of the composite slab to a broad
range of wavelengths. The range spans the transition from longwavelengths where the homogenization
approximation is excellent to short wavelengths where it is quite poor andwhere thewavelength-dependent
error can be determined.We chose to study homogenization in a lattice of air-holes i.e. a photonic crystal (PhC),
becausewe could vary parameters such as lattice geometry,material, and the air-hole volume FF. This allowed us
to examine different analytical theories for homogenization and determine their ranges of applicability. To
further validate the applicability of the analytical theories, we designed two gradient index devices without any
simulations: a Luneburg lens and a bi-directional cloak.We fabricated these devices on the polaritonics
platforms, and recorded time-resolvedmovies of each.

2. Experiment

The lattice of air-holes, Luneburg lens, and bi-directional cloakwere all fabricated in slabwaveguides using a
chemically-assisted femtosecond lasermachining process [25]. A bare 50 μmthick slab of LNor LTwasfirst
coatedwith a protective layer of silicon dioxide (SiO2) using plasma enhanced chemical vapor deposition. It was
thenmachined by focusing the output of an ultrafast Ti:sapphire laser (800 nm center wavelength, 1 kHz
repetition rate, 100 fs pulse duration) through a 0.25 NAobjective, each laser shot ablatingmaterial from the
sample surface. Repeated shots were used to drill holes all theway through the slabs. The samples were then
etched to remove the SiO2, amorphous or damaged LNor LT around the hole edges, and re-depositedmaterial.

Measurements of time-resolved THzwave propagationwere performed using a self-compensating
polarization gating imaging system [24]. First, a linearly polarized, 800 nm, cylindrically focused femtosecond
pulse generated a transverse electric (TE) polarized THzwave through optical rectification, that was waveguided
down the LNor LT slab (see figure 1(a) inset, bottom-right). The propagating THz electric field (E-field)
induced a time- and position-dependent change in the LNor LT index of refraction through the electro-optic
effect, imparting a position-dependent phase shift,ϕ x y( , ), to a time-delayed, spatially expanded probe beam
thatwas passed through the sample. The polarization gating imaging system converted the phase information
into a spatially varying intensity change I x y( , ) that was detected by a camera. By changing the relative time delay
between the THz-generating excitation pulse and the probe pulse, a series of images was recordedwith the THz
wave at different stages of propagation. The images can be played back in time-sequence to present amovie of
THzwave propagation. For the air-hole lattice, the optical pump line source generated a broadbandTHzwave
and spanned the 0.1–2 THz frequency range. For the gradient index devices, a titled intensity front [26]was used
to generate amulticycle THzwave centered at 0.26 THz (Luneburg lens) or 0.30 THz (bi-directional cloak).
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The generated THzwaves are essentially planewaves as shown in the top-left inset offigure 1(a)where the
THzwave is shown 12 ps after generation propagating along the+x direction in a bare LN slab of 50 μm
thickness. Uniformity of the THzE-field along the y directionwas used to collapse the intensity information
fromone frame in themovie into a 1D row vector representing I(x). Repeating this procedure with the image
recorded at each time delay and displaying the collapsed row vectors I x t( , ) in time order along the vertical axis
generated a 2Dmatrix or space–time plot as shown infigure 1(a). Figure 1(b) is the corresponding dispersion
diagram for the bare LNwaveguide, whichwas obtained by performing a 2DFourier transformof the space–
time plot [27] and shows thefirst twoTEwaveguidemodes. Infigure 1(b), the horizontal axis is the propagation
constant, β π λ= 2 , where λ is the propagationwavelength, and the vertical axis is the corresponding
eigenfrequency. In this article, wewill refer to λ as the propagationwavelength in the slabwaveguide rather than
the TEMwavelength λ ω= c nTEM because the former is the longitudinal wavelength componentmost relevant
for interactions with the structures or inclusions.We overlay onfigure 1(b) awaveguide dispersion curve that

Figure 1.Dispersion curves reveal breakdown of homogenization approximation. (a) The space–time plot of the bare LN slabwith the
image intensity showing the THzE-field. Top left inset shows a THzwave recorded by the camera, with uniformity along the y-
dimension exploited to collapse the image and create the space–time plot. Bottom right inset shows the experimental geometry, with
cylindrically focused 800 nmpumppulse passing through the LN slab and generating counterpropagating THzwaves, one of which
may encounter the composite structure. (b) Thewave amplitude at each frequency andwave vector is obtained from the 2DFourier
transformof (a) and shows the experimental TEwaveguide dispersion diagram. The overlaid numerically calculatedwaveguide
dispersion curves demonstrate agreement at all wavelengths as expected for this truly homogenous waveguide. (c) Space–time plot for
the LN slabwith a square lattice of air-holes, showing coherent reflections at 100 μmintervals corresponding to the lattice constant a.
Inset shows an experimentally recorded image of a THzwave propagating inside the PhC slab. (d) PhCwaveguide dispersion curve
obtained by 2DFourier transformof (c), showing good agreement at longwavelengths (small β) to a homogeneous slabwaveguide
curve dispersion curve (green) with a best-fit effective index valueneff . Inset showsmagnified view of the lowest ordermodewhere
deviation between the homogenous (green) and experimental (Expʼt, red) curve demonstrates breakdown of the homogenization
approximation.
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was calculated numerically [28]with the refractive index as an adjustable parameters optimized to reproduce the
experimental bare LN slabwaveguide curve accurately. Infigure 1(c), we show the space–time plot for the 50 μm
thick LNwaveguide thatwas patterned by cutting a square lattice of air-holes through the slab (see figure 1(c)
inset) with 26 μmdiameter and 100 μmperiod. The spatially periodic intensitymodulation observed in the x-
direction is reduced at the locations of the air holes because the signal from the THzfield is only detected in the
electro-optic crystallinematerial, so the vertically integrated intensity is lowerwhere some of the crystalline
material is replaced by air. This DC spatial variation does not affect the dispersion curves which are only
calculated for finite frequencies. THzwave propagation through and reflection from each rowof air-holes gives
rise to a frequency-dependent contribution. Figure 1(d) shows the corresponding dispersion diagram. The
upper part of the lowest-order dispersion curve shows that for wavevector values above approximately
20 rad mm−2, the patterned LN slab can no longer be treated as a bare slabwith a constant index value. The
dispersion curves are heavilymodified because the patterned slab corresponds to a PhCwaveguide, with several
modes visible. Despite the non-uniformity of some PhCs along the y-direction (e.g. hexagonal lattice), the
intensity can be collapsed along the y-dimension because of the use of a line-source excitation, whichmost
significantly projects ontomodes that are spatially uniform along y. The validity of this approach is proven by
strong agreement of the experimental dispersion curves with simulations [29].

According to the homogenization approximation, for all wavelengths considerably larger than the size of the
air-holes, the PhCwaveguide is equivalent to a slabwaveguide with a single effective index (neglectingmaterial
dispersion in the applicable long-wavelength range). To demonstrate this, we overlay onfigure 1(d) a numerical
waveguide dispersion curve (green solid) calculated for 50 μmthickness with the refractive index determined by
fitting to the experimental curve at longwavelengths.We focus specifically on the lowest order TEmode since
this is the one that can satisfy the longwavelength regime in our experiments. Agreement between experimental
data and thefitted numerical curve at longwavelengths suggests that the PhCwaveguide can be treated as a
homogenous slabwith an effective index of =n 4.15eff in this regime.However, at shorter wavelengths the
homogenization approximation breaks down (see figure 1(d) inset); the two dispersion curves begin to diverge
as the THzwavelength approaches the size of the air-holes and coherent in-phase reflections begin to heavily
modify the dispersion from that of a bulkmaterial to that characteristic of a PhCwith bandgaps. Since the
experimental dispersion curve includes the range of wavelengths inwhich the deviation begins to become
significant, we can determine thewavelength-dependent percent difference in frequencies between the fitted
and experimental curves (see figure 2).

Figure 2.Percent change between experimental and homogenizedwaveguide frequencies for LNor LTPhC slabs as a function of
normalized wavelength.Dotted line indicates 5% change. (a) At FF= 0.21 and μ=a 100 m, all four lattices in LT ( =n 6.4LT ) show
homogenization onset at λ Λ = ±1.3 0.1cutoff Br (b)while LN ( =n 5.0LN ) due to its lower index contrast shows onset at
λ Λ = ±1.2 0.1cutoff Br (c) larger fill fractions increase λ Λ = ±1.3 0.1cutoff Br ( =n 5.1LN ).
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3. Results

Wedetermine the influence of lattice geometry and orientation (relative to thewave propagation direction),
hostmaterial, and areal FF of the holes by comparing the cutoff wavelengths in a number of diverse composite
waveguides. The influence of various parameters on λcutoff can be used as an expedientmeasure of their
influence on thewavelength range over which the PhC structure can be treated as homogeneous. These
parameters also themost readilymodifiable in creatingGRINor transformation optics devices, and
understanding their effects will guide the design of future devices.

In PhC structures, a fundamental limit for homogenization is given by the Bragg effect inwhich the
reflections from alternating layers add in phase to provide a strong net reflection. This typically belongs to awave
at the edge of the Brillouin zonewithwave vectorkBr or Braggwavelength Λ π= k2Br Br, andwill differ
depending on geometry and orientation. To account for this, we normalized the propagationwavelength
(λ π β= 2 ) to the Braggwavelength. Further, we define λcutoff as thewavelength at which a 5%difference occurs
between the homogenized and experimental frequencies, which is often accurate enough for device design (see
applications) and so can be taken as a lower limit for the applicability of the homogenization treatment. The
results are summarized in table 1, whilefigure 2 shows thewavelength-dependent percent difference between
the experimental and homogenized dispersion curves. As expected, the percent change is considerable when
λ ΛBr is near unity, but decreases toward zero as λ ΛBr increases and the homogenization approximation
becomes valid.

3.1. Lattice geometry and orientation
Wefirst studied the influence of lattice geometry and orientationwhile holding the fill factor and lattice
periodicity constant at = ±FF 0.21 0.1and μ=a 100 m in a 50 μmthick LT slab (see figure 2(a)).We recorded
the dispersion curves and compared the cutoff wavelengths in square lattices oriented at 0o (Γ to X) and 45o (Γ to
M) and in hexagonal lattices oriented at 0o (Γ toM) and 30o (Γ to K). The optical andTHzwave polarizations
were along the optic axis of the LT crystal in all cases. In all four lattices, the cutoff wavelengthwas found to be
λ Λ = ±1.3 0.1cutoff Br (see figure 2(a), table 1(a)), indicating consistency between different lattice geometries
and orientations. The consistency shows that ΛBr better represents characteristic length scale than the lattice
constant a, i.e. despite all four lattices having different ΛBr values (see table 1(a)), homogenization breaks down
in all cases at the same λ ΛBr ratio. The role of ΛBr demonstrates the influence of the in-phase reflections (i.e.
Bragg reflections) and indicates that the approach toward the PhC regime serves as the fundamental limiting
factor to the homogenization approximation. For some applications, it would be sensible to use the geometry
with the smallest values of ΛBr because it allows for the use of a smaller λcutoff and thereby relaxes fabrication.
Alternatively, using an aperiodic lattice of inclusions can remove coherent in-phase reflections and also extend
λcutoff to smaller wavelengths.

3.2.Material
ALT slab has a slightly higher λ Λ = ±1.3 0.1cutoff Br in comparison to LNwith λ Λ = ±1.2 0.1cutoff Br when all
other parameters are kept constant (see figure 2(b), table 1(a)). The result is unsurprising due to the difference in

Table 1. Influence of geometry andmaterial on the cutoff wavelength (±0.1), defined as the wavelength at which a 5%difference between the
homogenized and experimental frequencies occurs. Bulk extraordinary indices are (±0.1 dependent on sample) =n 6.44LT , =n 5.0LN .
Lattice constant μ=a 100 m in all structures listed. There is consistency between geometries at the same FF, but differences betweenmateri-
als due to index differences.

Material Geometry Radius FF λ Λcutoff Br ΛBr

(a) Influence of geometry andfill fraction

LT Sqr 0o (Γ toX) 26 μm 0.22 1.3 a2

LT Sqr 45o (Γ toM) 26 μm 0.20 1.3 a2

LT Hex 0o (Γ toM) 24 μm 0.20 1.3 a3

LT Hex 30o (Γ toK) 24 μm 0.20 1.3 a3 2

LN Hex 0o (Γ toM) 24 μm 0.20 1.2 a3

(b) Influence of FF

LN Hex 0o (Γ toM) 18.5 μm 0.12 1.0a a2

LN Hex 0o (Γ toM) 24 μm 0.20 1.2 a2

LN Hex 0o (Γ toM) 33 μm 0.40 1.8 a3

a 5%difference occurs very near the Braggwavelength towithin an error of ±0.1. Values below 1.0 correspond to
wavelengths beyond the Braggwavelength and have no significance.
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bulk index between LT (n=6.4) and LN (n=5.0).Material clearly plays a role in the formof index contrast [30],
with higher index contrasts resulting in stronger Fresnel reflections and strongermodification of the dispersion
relation of the compositematerial, thereby increasing λcutoff .When designing homogenization approximation
based devices, itmay be useful to try tominimize the index contrast to allowoperation at smaller wavelengths,
while still allowing sufficient contrast tomeet the required index tuning range. In section 4, we build our devices
in LT instead of LN since it offers awider index tuning rangewhile only having a slightly larger λ Λcutoff Br. In
general, other performance characteristics of amaterial that should be considered are the intrinsicmaterial
losses and dispersion.

3.3. Volume FF
Although λ Λcutoff Br isminimally influenced by lattice geometry and orientation, it depends strongly on the
volumefill factor (see figure 2(c)).Here, we analyze FF of 0.12, 0.2 and 0.40 by varying the radii of the air-holes
in a hexagonal lattice with results summarized in table 1(b). The hostmaterial is LN and ΛBr is preserved at

Λ μ= =a3 173 mBr in all three structures. The plot shows that larger FF increases λcutoff . Itmight be
suggested that larger air-holes produce a smaller effective index, thereby naturally increasing λcutoff . However,
our results show that λcutoff increases bymore than the inverse of the effective index. The results indicate that
lattice periodicity cannot be the onlymetric used to evaluate the homogenization approximation, as the size of
the inclusionsmust be taken into account. Larger inclusions result inmore scattering and produce a larger band
gap. This requires that the light depart fromhomogenous behavior and begin PhCbehavior at longer
wavelengths, giving rise to a larger λcutoff value.

Our experimentalmethodsmake it difficult to discern the behavior of λcutoff at FF far past 0.6, since the
signal comes entirely from the hostmaterial and is reducedwhen the air-holes take upmost of the volume.
Further complicatingmatters is that as FF becomes large, thewaveguiding condition is lost since thematerial
becomes largely air. In any specific system, the actual FF at which λcutoff reaches amaximumwill depend on
many factors including the nature of the inclusions and the lattice geometry. Our simulations for square and
hexagonal lattices indicate that the largest λcutoff occurswhen the perturbation to a bulk hostmedium is largest,
which is in the vicinity of ∼ −FF 0.5 0.8. At even larger FF thewidth of the band gap, and therefore λcutoff ,
decreases as the perturbation shrinks and host and inclusions reverse roles.

3.4. Length scales
In a bulk substrate (neglectingmaterial dispersion), λ Λcutoff Br remains constant as the entire system is scaled up,
i.e. λcutoff and ΛBr both increase proportionally. This is due to the scale invariance ofMaxwellʼs equations. But in
awaveguide with afixed slab thickness, λ Λcutoff Br will decrease as the system is scaled up because λcutoff does not
increase proportional to ΛBr. At larger wavelengths, the light ismore heavily extended into the surrounding air
and less affected by structures or inclusions, thereby reducing λcutoff compared to the bulk substrate value.
However, this was not a significant factor for the length scales investigated, where increasing the size of the
system ( μ=r 21 m, μ=a 60 m to μ=r 35 m, μ=a 100 m) did not show a change in λ Λcutoff Br. Nonetheless, it
is desirable to use structures on the order of the slab thickness when designingwaveguide devices because this
allows for both localization in the slab and strong interactionwith the structures.

3.5. Parameter trends
Several FFs, lattice geometries and orientations, length scales, and two high index contrastmaterials were tested
in order to determine trends in λ Λcutoff Br. Despite the dependence of λ Λcutoff Br on these parameters, we found
that satisfying λ Λ ⩾ 2Br allowed the homogenization approximation to hold regardless of the parameters used.

4. Analytical formulae

An analytical formula that can closely predict the effective index of a compositematerial in the longwavelength
limit is a useful tool for rapid development ofGRINdevices, and can prove useful as a starting point for
simulations. Herewe compare the effective index calculated by analytical formulae to that obtained by fitting to
the experimental data. Comparison of these values can be used as ametric to determine the predictive power of
the formulas. Specifically, we examine thewell-establishedMaxwell–Garnettmixing formula (MGF) [31] that is
often used to estimate the effective index for cylindrical inclusions in a hostmaterial when the E-field is
perpendicular to the height of the cylinder [14, 19]
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In deriving both JSF andMGF, theE-fieldwithin the inclusions is related to the local external field in order to
calculateneff .

Figure 3 compares thefitted effective index (nfit) with the analytical effective index (nMGF andnJSF) for a
number of lattices,materials, and FFs. Error bars are a result of an upper and lower bound on the air-hole radius;
the black annuli around the air-holes (see figure 1(c) inset)makes it difficult to report an absolute air-hole
diameter. Points closer to the y= x line demonstrate an analytical effective index thatmore closelymatches the
fitted effective index, and shows thatMGFhas slightly stronger predictive power. This is particularly interesting
at larger FF (smallerneff ), whereMGF is expected to suffer by not accurately factoring in the effect of
neighboring inclusions, with exceptions in the case of random configurations [33]. The validity ofMGF at high
FF in the periodic arrays of inclusions studied here ( ⩽FF 0.5–0.7 in all data) suggests that the dipolefield from
neighboring inclusionsmay not be significant in our experiments, and JSF is overestimating their contributions
toneff . Based on previous studies, it is expected that JSFwill show stronger predictive power beyond a threshold
FF, when the inclusions become connected [32]. But in our PhCwaveguides,MGFproves it can be very useful in
predicting the effective index.

5. Applications

To test the applicability of the homogenization condition and analytical formulae, we designed and fabricated a
Luneburg lens [34] and a cloak in the polaritonics platform. The time-resolved imaging of the THzfields inside
the devices offers direct insight into device operation. In addition to testing homogenization theories,
transformation optics andGRINdevices expand the capabilities of the polaritonics toolkit and offer great
potential for THz telecommunications or all-optical processing systems. Designing devices in awaveguide is

Figure 3.The predictive power of analytical formulae in estimating the experimental refractive indexnfit measured in the long-
wavelength limit. (a)MGF shows stronger predictive power than (b) JSF even at higherfill fractions (lower refractive index). Error
bars result fromupper and lower bound on the air-hole radius.
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more complicated than in bulk due to thefinite lateral dimension and electromagnetic field profile. In a bare slab
waveguide, higher frequencywaves aremore highly concentrated in the slab, and this can be translated to a
frequency-dependent waveguide index ωn ( )wg [28]. In designing devices for a specific frequencyωo, we used

ωn ( )wg o as the value for the bulk index.We fabricated the devices in a 50 μmthick LT slabwaveguide, and tuned

the index by varying the radius of air-holes and calculating the effective index usingMGF. The analytical formula
proves extremely useful for determining the air-hole size required to achieve the desired index, whichwould
otherwise require an extensive database offitted curves or time-consuming simulations.

Thefirst device demonstrated here is a rotationally symmetric lens (seefigure 4(a),media 1), known as a
Luneburg lens. Unlike conventional lenses, the Luneburg lens is capable of focusing a planewave incident from
any direction to a point on the other side of its surface. The lens was fabricated to have an index distribution

= −n r n r R( ) 2 ( )o
2 , where r is the radius from the center, =R a10 , and no = 4. Preserving a unit cell at

μ=a 100 m and a center wavelength of λ μ= 300 m, this translates to an increasing index of 2.6 at the center
where there are no air-holes, to an index of 4.3 at the edgewith a hole radius of 37 μm.

Figure 4 andmedia 1 show the time evolution of a THzwave as it passes through the lens. As it propagates,
the curvature of the THzwave changes (compare figures 4(a) and (b)) beforefinally focusingwithin the lens
(figure 4(c)). The operation of the device is encouraging, with a focal spot size of μ∼200 m that is slightly larger
than the diffraction limit of λ μ=2 150 m in an ideal Luneburg lens [14]. The incomplete focusing can be
attributed to the curvature andfinite bandwidth of the incoming THzfield that result from themulticycle THz
wave generation process. The amount of light coupled in to the lens is reduced due to the impedancemismatch
at the edge, but can be overcome by gradually varying the effective index fromnhost tonedge in order to create an

anti-reflection coating. The highest FF in this device is 0.44where it is estimated that λ μ≃ 380 mcutoff

(λ Λ ≃ 1.9cutoff Br , square lattice Λ = a2Br , μ=a 100 m). The successful qualitative operation of this device at
λ λ< cutoff is a potential indication that it is possible to operate beyond the cutoff wavelength by removing the
periodicity that creates the Bragg diffraction, or that a 5%difference between homogenized and experimental
frequencies used in our analysis is an overly strict condition for the cutoff wavelength.

Figure 4.ALuneburg lens in a 50 μmLTwaveguide, focusing amulticycle THzwave. The index profile in thewaveguide of n=4.3 in
the center ton=2.6 at the edge for a center wavelength of 260 μm in thewaveguide is achieved by varying thefill fraction of air-holes in
a unit cell μ=a 100 m. Air-holes have been artificiallymasked inwhite for clarity. (a) Incoming THzwave (b) change in curvature of
the beamonce it enters the lens after 37 ps (c) focused THzwavewith spot size of 200 μmafter 52 ps. The approximate focus is
indicated by the red-shaded holes. Air-holes have been artificiallymasked inwhite with a black border for clarity.

Figure 5.Cloaking of a triangular air trench for amulticycle THzwave of center wavelength λ μ= 260 m in a 50 μmLTwaveguide.
The cloak excludes light from the center of the slab anduses additional air trenches on the top and bottom to recollect the light at the
output. (a) Incoming THzwave and (b) resulting diffraction pattern after interacting with the triangular air-hole. (c) Incoming THz
wavewith inset showing the rectangular air trenches above and below the cloak. (d)Well-preserved THzwave after avoiding the
cloaked triangle. The air-holes and triangular hole in (b)–(d) have been artificiallymasked inwhite with a black border for clarity.
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Abi-directional cloak, a device that routes the path of incoming light around an object, was also studied in
order to demonstrate further control over the THzwaveform (seefigure 5,media 2, andmedia 3). ATHzwave of
λ μ= 260 m was usedwith a square lattice constant of μ=a 73 m. The device has an inverted index profile of a
lens so that it excludes light from the focal point [19]. Additional air trenches above and below the cloak (not
shown infigure 5) allow the redirected light to be collected at the output face. Successful operation of the device
can be seen by comparing the interaction of a THzwavewith a structure in the absence and presence of the cloak.
Figures 5(a) and (b) showbefore and after images of a THzwave as it encounters a large triangular air-hole, after
which the THzwave forms a distinct diffraction pattern (media 2). Figures 5(c) and (d) show the results when
the triangular air-hole is embedded in the cloak (media 3). Here the THzwave is routed around the object, and
the resulting output retains the curvature of the inputwave. The cloak operates independent of thematerial
placed inside because the light is diverted around the center of the cloak.

6. Conclusion

In this article, wefirst analyzed composite waveguides to quantitatively determine thewavelength range over
which the homogenization approximation is valid. The onset of homogenization, when appropriately
normalized to the Braggwavelength, was nearly independent of lattice geometry and propagation direction.
However, the homogenization did depend strongly on FF andwasweakest when the sample was roughly
50–70% ‘inclusion’. Fundamentally, homogenization broke down as the compositematerial entered the PhC
regime of operationwhere coherent in-phase reflections lead to a photonic band gap. Also, note that the THz
index contrast between air and LNor LT ismuch larger than the contrast at optical wavelengths where typical
waveguides have refractive indices in the range of 1–3.5. Combining the (i) larger index contrasts studied here,
(ii) the cutoff condition of 5%, and (iii) having probed FF up to range of 0.5–0.7 near the perturbation to a bulk
slab is largest, suggest that λ Λ ⩾ 2Br should serve as an adequate condition formost conventional dielectric
effective index devices.

We subsequently used the effective index extracted fromour experimental curves to compare the predictive
strength of analytical formulae, with theMGF showing excellent predictive quality even at higher FF. Equipped
with an analytical formula, we designed and performed time-resolved studies of GRINdevices. These devices
seamlessly interface with existing polaritonics capabilities such as focusing [21],field enhancement [35], and
pulse shaping of the driving femtosecond pulse [23], and could serve practical uses in optical processing on the
polaritonics platform. Specifically, a Luneburg lens could prove useful for coupling light into an on-chip THz
detector, collimating light from an on-chip THz source, or for applications requiring highfield strengths in
tightly confined dimensions. The cloakmay benefit systems requiring planar integration of electrical and optical
components, since it is possible to cloak objects such that propagating light isminimally affected by their
presence. Other platformswith similar fabrication constraintsmay also benefit from the results shown here,
since the conditions are dimensionless and the results should be valid at all wavelengths. Futureworkmay
include analyzing the effect ofmore complicated inclusion shapes and symmetries.
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