595 research outputs found
Transmission through a n interacting quantum dot in the Coulomb blockade regime
The influence of electron-electron (e-e) interactions on the transmission
through a quantum dot is investigated numerically for the Coulomb blockade
regime. For vanishing magnetic fields, the conductance peak height statistics
is found to be independent of the interactions strength. It is identical to the
statistics predicted by constant interaction single electron random matrix
theory and agrees well with recent experiments. However, in contrast to these
random matrix theories, our calculations reproduces the reduced sensitivity to
magnetic flux observed in many experiments. The relevant physics is traced to
the short range Coulomb correlations providing thus a unified explanation for
the transmission statistics as well as for the large conductance peak spacing
fluctuations observed in other experiments.Comment: Final version as publishe
Even-odd correlations in capacitance fluctuations of quantum dots
We investigate effects of short range interactions on the addition spectra of
quantum dots using a disordered Hubbard model. A correlation function \cS(q) is
defined on the inverse compressibility versus filling data, and computed
numerically for small lattices. Two regimes of interaction strength are
identified: the even/odd fluctuations regime typical of Fermi liquid ground
states, and a regime of structureless \cS(q) at strong interactions. We
propose to understand the latter regime in terms of magnetically correlated
localized spins.Comment: 3 pages, Revtex, Without figure
Decay of Quasi-Particle in a Quantum Dot: the role of Energy Resolution
The disintegration of quasiparticle in a quantum dot due to the electron
interaction is considered. It was predicted recently that above the energy
\eps^{*} = \Delta(g/\ln g)^{1/2} each one particle peak in the spectrum is
split into many components ( and are the one particle level spacing
and conductance). We show that the observed value of \eps^{*} should depend
on the experimental resolution \delta \eps. In the broad region of variation
of \delta \eps the should be replaced by \ln(\Delta/ g\delta \eps).
We also give the arguments against the delocalization transition in the Fock
space. Most likely the number of satellite peaks grows continuously with
energy, being at \eps \sim \eps^{*}, but remains finite at \eps >
\eps^{*}. The predicted logarithmic distribution of inter-peak spacings may be
used for experimental confirmation of the below-Golden-Rule decay.Comment: 5 pages, REVTEX, 2 eps figures, version accepted for publication in
Phys. Rev. Let
Properties of low-lying states in a diffusive quantum dot and Fock-space localization
Motivated by an experiment by Sivan et al. (Europhys. Lett. 25, 605 (1994))
and by subsequent theoretical work on localization in Fock space, we study
numerically a hierarchical model for a finite many-body system of Fermions
moving in a disordered potential and coupled by a two-body interaction. We
focus attention on the low-lying states close to the Fermi energy. Both the
spreading width and the participation number depend smoothly on excitation
energy. This behavior is in keeping with naive expectations and does not
display Anderson localization. We show that the model reproduces essential
features of the experiment by Sivan et al.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let
Effects of a saponin fraction extracted from Trigonella foenum-graecum L. and two commercially available saponins on sex ratio and gonad histology of Nile tilapa fry, Oreochromis niloticus (L.)
Over three million tonnes (t) of tilapia, mostly Nile tilapia (Oreochromis niloticus, L.), are produced annually making it the second most abundantly produced freshwater fish (FAO, 2010). Tilapia are mouthbreeders that often produce stunted populations under pond conditions; one means of prevention is to produce all-male fish with the additional advantage that males usually grow faster than females. All-male populations can be achieved by supplementing feed with androgens such as 17-α-Methyltestosterone (MT) during days 10–25 post-hatch (Pandian and Sheela, 1995). However, MT is considered to be carcinogenic (Velazquez and Alter, 2004), and Hulak et al. (2008) also showed that effluents of systems in which carp were fed diets containing MT caused masculinization of female fish. Furthermore, in aquaculture the application of hormones to fish destined for human consumption is prohibited in the European Union under directive 96/22/EC, article 5, which also prohibits import of animal products produced with hormones.
Kwon et al. (2000) showed that Fadrozole, a non-steroidal compound, caused masculinization in tilapia by inhibiting aromatase, which is the enzyme responsible for the conversion of endogenous androgens to estrogens. Steinbronn et al. (2004) were able to show that a dose of 2000 ppm Quillaja saponins (Sigma S-2149) inhibited reproduction of tilapia after dietary application for 32 days to first-feeding fry, suggesting saponins as a possible alternative to MT. These secondary plant compounds consist of either a steroid or triterpenoid basic structure (aglycone or sapogenin) plus one or more sugar side chains (Francis et al., 2002a).
In a previous experiment a saponin fraction from the soapbark tree (Quillaja saponaria M.) inhibited aromatase in vitro (Golan et al., 2008). The fenugreek plant (Trigonella foenum-graecum L), widely cultivated in the Middle East and Asia, also has a high saponin content. The experiment was therefore conducted to test whether saponin fractions from Q. saponaria and from T. foenum-graecum were able to influence the sex ratio and gonad histology of Nile tilapia
Optimal rotations of deformable bodies and orbits in magnetic fields
Deformations can induce rotation with zero angular momentum where dissipation
is a natural ``cost function''. This gives rise to an optimization problem of
finding the most effective rotation with zero angular momentum. For certain
plastic and viscous media in two dimensions the optimal path is the orbit of a
charged particle on a surface of constant negative curvature with magnetic
field whose total flux is half a quantum unit.Comment: 4 pages revtex, 4 figures + animation in multiframe GIF forma
Statistics of the Charging Spectrum of a Two-Dimensional Coulomb Glass Island
The fluctuations of capacitance of a two-dimensional island are studied in
the regime of low electron concentration and strong disorder, when electrons
can be considered classical particles. The universal capacitance distribution
is found, with the dispersion being of the order of the average. This
distribution is shown to be closely related to the shape of the Coulomb gap in
the one-electron density of states of the island. Behavior of the the
capacitance fluctuations near the metal - insulator transition is discussed.Comment: 4 pages, LaTex, 4 Postscript figures are included Discussion of the
situation with screening by metallic gate is adde
Quasiparticle spectra from a non-empirical optimally-tuned range-separated hybrid density functional
We present a method for obtaining outer valence quasiparticle excitation
energies from a DFT-based calculation, with accuracy that is comparable to that
of many-body perturbation theory within the GW approximation. The approach uses
a range-separated hybrid density functional, with asymptotically exact and
short-range fractional Fock exchange. The functional contains two parameters -
the range separation and the short-range Fock fraction. Both are determined
non-empirically, per system, based on satisfaction of exact physical
constraints for the ionization potential and many-electron self-interaction,
respectively. The accuracy of the method is demonstrated on four important
benchmark organic molecules: perylene, pentacene,
3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA) and
1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA). We envision that for
finite systems the approach could provide an inexpensive alternative to GW,
opening the door to the study of presently out of reach large-scale systems
Quasiparticle Lifetime in a Finite System: A Non--Perturbative Approach
The problem of electron--electron lifetime in a quantum dot is studied beyond
perturbation theory by mapping it onto the problem of localization in the Fock
space. We identify two regimes, localized and delocalized, corresponding to
quasiparticle spectral peaks of zero and finite width, respectively. In the
localized regime, quasiparticle states are very close to single particle
excitations. In the delocalized state, each eigenstate is a superposition of
states with very different quasiparticle content. A transition between the two
regimes occurs at the energy , where is
the one particle level spacing, and is the dimensionless conductance. Near
this energy there is a broad critical region in which the states are
multifractal, and are not described by the Golden Rule.Comment: 13 pages, LaTeX, one figur
- …
