72 research outputs found

    Functional relevance of nonsynonymous mutations in the HIV-1 tat gene within an epidemiologically-linked transmission cohort

    Get PDF
    Here we investigated the nature and functional consequences of mutations in the HIV-1 tat gene within an epidemiologically-linked AIDS transmission cohort consisting of a non-progressing donor (A) and two normal progressing recipients (B and C). Multiple nonsynonymous mutations in the tat first exon were observed across time in all individuals. Some mutations demonstrated striking host specificity despite the cohort being infected with a common virus. Phylogenetic segregation of the tat clones at the time of progression to AIDS was also observed especially in recipient C. Tat clones supporting high levels of transactivation were present at all time points in all individuals, although a number of clones defective for transactivation were observed for recipient C in later time points. Here we show that the tat quasispecies in a linked transmission cohort diversify and evolve independently between hosts following transmission. It supports the belief that quasispecies variation in HIV-1 is a mechanism for selection towards defining a fitter gene variant that is capable of resisting the human immune system

    A mutant tat protein inhibits HIV-1 reverse transcription by targeting the reverse transcription complex

    Get PDF
    Previously, we reported that a mutant of Tat referred to as Nullbasic inhibits HIV-1 reverse transcription although the mechanism of action is unknown. Here we show that Nullbasic is a reverse transcriptase (RT) binding protein that targets the reverse transcription complex rather than directly inhibiting RT activity. An interaction between Nullbasic and RT was observed by using coimmunoprecipitation and pulldown assays, and a direct interaction was measured by using a biolayer interferometry assay. Mixtures of recombinant 6 x His-RT and Nullbasic-FLAG-V5-6 x His at molar ratios of up to 1:20,000 did not inhibit RT activity in standard homopolymer primer template assays. An analysis of virus made by cells that coexpressed Nullbasic showed that Nullbasic copurified with virus particles, indicating that it was a virion protein. In addition, analysis of reverse transcription complexes (RTCs) isolated from cells infected with wild type or Nullbasic-treated HIV-1 showed that Nullbasic reduced the levels of viral DNA in RTC fractions. In addition, a shift in the distribution of viral DNA and CAp24 to less-dense non-RTC fractions was observed, indicating that RTC activity from Nullbasic-treated virus was impaired. Further analysis showed that viral cores isolated from Nullbasic-treated HIV undergo increased disassembly in vitro compared to untreated HIV-1. To our knowledge, this is the first description of an antiviral protein that inhibits reverse transcription by targeting the RTC and affecting core stability

    A HIV-1 Tat mutant protein disrupts HIV-1 Rev function by targeting the DEAD-box RNA helicase DDX1

    Get PDF
    BACKGROUND: Previously we described a transdominant negative mutant of the HIV-1 Tat protein, termed Nullbasic, that downregulated the steady state levels of unspliced and singly spliced viral mRNA, an activity caused by inhibition of HIV-1 Rev activity. Nullbasic also altered the subcellular localizations of Rev and other cellular proteins, including CRM1, B23 and C23 in a Rev-dependent manner, suggesting that Nullbasic may disrupt Rev function and trafficking by intervening with an unidentified component of the Rev nucleocytoplasmic transport complex. RESULTS: To seek a possible mechanism that could explain how Nullbasic inhibits Rev activity, we used a proteomics approach to identify host cellular proteins that interact with Nullbasic. Forty-six Nullbasic-binding proteins were identified by mass spectrometry including the DEAD-box RNA helicase, DDX1. To determine the effect of DDX1 on Nullbasic-mediated Rev activity, we performed cell-based immunoprecipitation assays, Rev reporter assays and bio-layer interferometry (BLI) assays. Interaction between DDX1 and Nullbasic was observed by co-immunoprecipitation of Nullbasic with endogenous DDX1 from cell lysates. BLI assays showed a direct interaction between Nullbasic and DDX1. Nullbasic affected DDX1 subcellular distribution in a Rev-independent manner. Interestingly overexpression of DDX1 in cells not only restored Rev-dependent mRNA export and gene expression in a Rev reporter assay but also partly reversed Nullbasic-induced Rev subcellular mislocalization. Moreover, HIV-1 wild type Tat co-immunoprecipitated with DDX1 and overexpression of Tat could rescue the unspliced viral mRNA levels inhibited by Nullbasic in HIV-1 expressing cells. CONCLUSIONS: Nullbasic was used to further define the complex mechanisms involved in the Rev-dependent nuclear export of the 9 kb and 4 kb viral RNAs. All together, these data indicate that DDX1 can be sequestered by Nullbasic leading to destabilization of the Rev nucleocytoplasmic transport complex and decreased levels of Rev-dependent viral transcripts. The outcomes support a role for DDX1 in maintenance of a Rev nuclear complex that transports viral RRE-containing mRNA to the cytoplasm. To our knowledge Nullbasic is the first anti-HIV protein that specifically targets the cellular protein DDX1 to block Rev’s activity. Furthermore, our research raises the possibility that wild type Tat may play a previously unrecognized but very important role in Rev function. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-014-0121-9) contains supplementary material, which is available to authorized users

    Specific Interaction between eEF1A and HIV RT Is Critical for HIV-1 Reverse Transcription and a Potential Anti-HIV Target

    Get PDF
    Reverse transcription is the central defining feature of HIV-1 replication. We previously reported that the cellular eukaryotic elongation factor 1 (eEF1) complex associates with the HIV-1 reverse transcription complex (RTC) and the association is important for late steps of reverse transcription. Here we show that associationbetween the eEF1 and RTC complexes occurs by a strong and direct interaction between the subunit eEF1A and reverse transcriptase (RT). Using biolayer interferometry and co-immunoprecipitation (co-IP) assays, we show that association between the eEF1 and RTC complexes occurs by a strong (KD ~3–4 nM) and direct interaction between eEF1A and reverse transcriptase (RT). Biolayer interferometry analysis of cell lysates with titrated levels of eEF1A indicates it is a predominant cellular RT binding protein. Both the RT thumb and connection domains are required for interaction with eEF1A. A single amino acid mutation, W252A, within the thumb domain impaired co-IP between eEF1A and RT, and also significantly reduced the efficiency of late reverse transcription and virus replication when incorporated into infectious HIV-1. Molecular modeling analysis indicated that interaction between W252 and L303 are important for RT structure, and their mutation to alanine did not impair heterodimerisation, but negatively impacted interaction with eEF1A. Didemnin B, which specifically binds eEF1A, potently inhibited HIV-1 reverse transcription by greater than 2 logs at subnanomolar concentrations, especially affecting reverse transcription late DNA synthesis. Analysis showed reduced levels of RTCs from HIV-1-infected HEK293T treated with didemnin B compared to untreated cells. Interestingly, HIV-1 with a W252A RT mutation was resistant to didemnin B negative effects showing that didemnin B affects HIV-1 by targeting the RT-eEF1A interaction. The combined evidence indicates a direct interaction between eEF1A and RT is crucial for HIV reverse transcription and replication, and the RT-eEF1A interaction is a potential drug target

    A Common Variant at the 14q32 Endometrial Cancer Risk Locus Activates AKT1 through YY1 Binding.

    Get PDF
    A recent meta-analysis of multiple genome-wide association and follow-up endometrial cancer case-control datasets identified a novel genetic risk locus for this disease at chromosome 14q32.33. To prioritize the functional SNP(s) and target gene(s) at this locus, we employed an in silico fine-mapping approach using genotyped and imputed SNP data for 6,608 endometrial cancer cases and 37,925 controls of European ancestry. Association and functional analyses provide evidence that the best candidate causal SNP is rs2494737. Multiple experimental analyses show that SNP rs2494737 maps to a silencer element located within AKT1, a member of the PI3K/AKT/MTOR intracellular signaling pathway activated in endometrial tumors. The rs2494737 risk A allele creates a YY1 transcription factor-binding site and abrogates the silencer activity in luciferase assays, an effect mimicked by transfection of YY1 siRNA. Our findings suggest YY1 is a positive regulator of AKT1, mediating the stimulatory effects of rs2494737 increasing endometrial cancer risk. Identification of an endometrial cancer risk allele within a member of the PI3K/AKT signaling pathway, more commonly activated in tumors by somatic alterations, raises the possibility that well tolerated inhibitors targeting this pathway could be candidates for evaluation as chemopreventive agents in individuals at high risk of developing endometrial cancer.The QIMR Berghofer groups were supported by a Rio Tinto Ride to Conquer Cancer (RTCC)/Weekend to End Women's Cancers (WEWC) Grant and NHMRC project grants 1058415 to SLE and 1031333 to ABS. ABS is supported by an NHMRC Senior Research Fellowship (1061779). DFE is a Principal Research Fellow of CR-UK.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Cell Press

    Potent Inhibition of HIV-1 Replication by a Tat Mutant

    Get PDF
    Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection
    • …
    corecore