826 research outputs found
Environmental statistics and optimal regulation
Any organism is embedded in an environment that changes over time. The
timescale for and statistics of environmental change, the precision with which
the organism can detect its environment, and the costs and benefits of
particular protein expression levels all will affect the suitability of
different strategies-such as constitutive expression or graded response-for
regulating protein levels in response to environmental inputs. We propose a
general framework-here specifically applied to the enzymatic regulation of
metabolism in response to changing concentrations of a basic nutrient-to
predict the optimal regulatory strategy given the statistics of fluctuations in
the environment and measurement apparatus, respectively, and the costs
associated with enzyme production. We use this framework to address three
fundamental questions: (i) when a cell should prefer thresholding to a graded
response; (ii) when there is a fitness advantage to implementing a Bayesian
decision rule; and (iii) when retaining memory of the past provides a selective
advantage. We specifically find that: (i) relative convexity of enzyme
expression cost and benefit influences the fitness of thresholding or graded
responses; (ii) intermediate levels of measurement uncertainty call for a
sophisticated Bayesian decision rule; and (iii) in dynamic contexts,
intermediate levels of uncertainty call for retaining memory of the past.
Statistical properties of the environment, such as variability and correlation
times, set optimal biochemical parameters, such as thresholds and decay rates
in signaling pathways. Our framework provides a theoretical basis for
interpreting molecular signal processing algorithms and a classification scheme
that organizes known regulatory strategies and may help conceptualize
heretofore unknown ones.Comment: 21 pages, 7 figure
Allocating and splitting free energy to maximize molecular machine flux
Biomolecular machines transduce between different forms of energy. These
machines make directed progress and increase their speed by consuming free
energy, typically in the form of nonequilibrium chemical concentrations.
Machine dynamics are often modeled by transitions between a set of discrete
metastable conformational states. In general, the free energy change associated
with each transition can increase the forward rate constant, decrease the
reverse rate constant, or both. In contrast to previous optimizations, we find
that in general flux is neither maximized by devoting all free energy changes
to increasing forward rate constants nor by solely decreasing reverse rate
constants. Instead the optimal free energy splitting depends on the detailed
dynamics. Extending our analysis to machines with vulnerable states (from which
they can break down), in the strong driving corresponding to in vivo cellular
conditions, processivity is maximized by reducing the occupation of the
vulnerable state.Comment: 22 pages, 7 figure
Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems
When simulating molecular systems using deterministic equations of motion
(e.g., Newtonian dynamics), such equations are generally numerically integrated
according to a well-developed set of algorithms that share commonly agreed-upon
desirable properties. However, for stochastic equations of motion (e.g.,
Langevin dynamics), there is still broad disagreement over which integration
algorithms are most appropriate. While multiple desiderata have been proposed
throughout the literature, consensus on which criteria are important is absent,
and no published integration scheme satisfies all desiderata simultaneously.
Additional nontrivial complications stem from simulating systems driven out of
equilibrium using existing stochastic integration schemes in conjunction with
recently-developed nonequilibrium fluctuation theorems. Here, we examine a
family of discrete time integration schemes for Langevin dynamics, assessing
how each member satisfies a variety of desiderata that have been enumerated in
prior efforts to construct suitable Langevin integrators. We show that the
incorporation of a novel time step rescaling in the deterministic updates of
position and velocity can correct a number of dynamical defects in these
integrators. Finally, we identify a particular splitting that has essentially
universally appropriate properties for the simulation of Langevin dynamics for
molecular systems in equilibrium, nonequilibrium, and path sampling contexts.Comment: 15 pages, 2 figures, and 2 table
- …