61 research outputs found

    Estimating background rates of Guillain-Barré Syndrome in Ontario in order to respond to safety concerns during pandemic H1N1/09 immunization campaign

    Get PDF
    Abstract Background The province of Ontario, Canada initiated mass immunization clinics with adjuvanted pandemic H1N1 influenza vaccine in October 2009. Due to the scale of the campaign, temporal associations with Guillain-Barré syndrome (GBS) and vaccination were expected. The objectives of this analysis were to estimate the number of background GBS cases expected to occur in the projected vaccinated population and to estimate the number of additional GBS cases which would be expected if an association with vaccination existed. The number of influenza-associated GBS cases was also determined. Methods Baseline incidence rates of GBS were determined from published Canadian studies and applied to projected vaccine coverage data to estimate the expected number of GBS cases in the vaccinated population. Assuming an association with vaccine existed, the number of additional cases of GBS expected was determined by applying the rates observed during the 1976 Swine Flu and 1992/1994 seasonal influenza campaigns in the United States. The number of influenza-associated GBS cases expected to occur during the vaccination campaign was determined based on risk estimates of GBS after influenza infection and provincial influenza infection rates using a combination of laboratory-confirmed cases and data from a seroprevalence study. Results The overall provincial vaccine coverage was estimated to be between 32% and 38%. Assuming 38% coverage, between 6 and 13 background cases of GBS were expected within this projected vaccinated cohort (assuming 32% coverage yielded between 5-11 background cases). An additional 6 or 42 cases would be expected if an association between GBS and influenza vaccine was observed (assuming 32% coverage yielded 5 or 35 additional cases); while up to 31 influenza-associated GBS cases could be expected to occur. In comparison, during the same period, only 7 cases of GBS were reported among vaccinated persons. Conclusions Our analyses do not suggest an increased number of GBS cases due to the vaccine. Awareness of expected rates of GBS is crucial when assessing adverse events following influenza immunization. Furthermore, since individuals with influenza infection are also at risk of developing GBS, they must be considered in such analyses, particularly if the vaccine campaign and disease are occurring concurrently

    Generation of recombinant single-chain antibodies neutralizing the cytolytic activity of vaginolysin, the main virulence factor of Gardnerella vaginalis

    Get PDF
    Generated scFvs is the first example of recombinant single-chain antibodies with VLY-neutralizing activity produced in prokaryote expression system. G. vaginalis caused infections continue to be a world-wide problem, therefore neutralizing recombinant antibodies may provide novel therapeutic agents useful in the treatment of bacterial vaginosis and other diseases caused by G. vaginalis

    Comparative Genomics of Gardnerella vaginalis Strains Reveals Substantial Differences in Metabolic and Virulence Potential

    Get PDF
    Gardnerella vaginalis is described as a common vaginal bacterial species whose presence correlates strongly with bacterial vaginosis (BV). Here we report the genome sequencing and comparative analyses of three strains of G. vaginalis. Strains 317 (ATCC 14019) and 594 (ATCC 14018) were isolated from the vaginal tracts of women with symptomatic BV, while Strain 409-05 was isolated from a healthy, asymptomatic individual with a Nugent score of 9.Substantial genomic rearrangement and heterogeneity were observed that appeared to have resulted from both mobile elements and substantial lateral gene transfer. These genomic differences translated to differences in metabolic potential. All strains are equipped with significant virulence potential, including genes encoding the previously described vaginolysin, pili for cytoadhesion, EPS biosynthetic genes for biofilm formation, and antimicrobial resistance systems, We also observed systems promoting multi-drug and lantibiotic extrusion. All G. vaginalis strains possess a large number of genes that may enhance their ability to compete with and exclude other vaginal colonists. These include up to six toxin-antitoxin systems and up to nine additional antitoxins lacking cognate toxins, several of which are clustered within each genome. All strains encode bacteriocidal toxins, including two lysozyme-like toxins produced uniquely by strain 409-05. Interestingly, the BV isolates encode numerous proteins not found in strain 409-05 that likely increase their pathogenic potential. These include enzymes enabling mucin degradation, a trait previously described to strongly correlate with BV, although commonly attributed to non-G. vaginalis species.Collectively, our results indicate that all three strains are able to thrive in vaginal environments, and therein the BV isolates are capable of occupying a niche that is unique from 409-05. Each strain has significant virulence potential, although genomic and metabolic differences, such as the ability to degrade mucin, indicate that the detection of G. vaginalis in the vaginal tract provides only partial information on the physiological potential of the organism

    Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface

    No full text
    cited By 14International audienceBiofilm formation by marine hydrocarbonoclastic bacteria is commonly observed and has been recognized as an important mechanism for the biodegradation of hydrocarbons. In order to colonize new oil-water interfaces, surface-attached communities of hydrocarbonoclastic bacteria must release cells into the environment. Here we explored the physiology of cells freshly dispersed from a biofilm of Marinobacter hydrocarbonoclasticus developing at the hexadecane-water interface, by combining proteomic and physiological approaches. The comparison of the dispersed cells' proteome with those of biofilm, logarithmic- and stationary-phase planktonic cells indicated that dispersed cells had lost most of the biofilm phenotype and expressed a specific proteome. Two proteins involved in cell envelope maturation, DsbA and CtpA, were exclusively detected in dispersed cells, suggesting a reshaping of the cell envelopes during biofilm dispersal. Furthermore, dispersed cells exhibited a higher affinity for hexadecane and initiated more rapidly biofilm formation on hexadecane than the reference planktonic cells. Interestingly, storage wax esters were rapidly degraded in dispersed cells, suggesting that their observed physiological properties may rely on reserve mobilization. Thus, by promoting oil surface colonization, cells emigrating from the biofilm could contribute to the success of marine hydrocarbonoclastic bacteria in polluted environments. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd

    Echange d'information sur le malade dans un h�pital psychiatrique

    No full text

    Polymorphism of the Cell Wall-Anchoring Domain of the Autolysin-Adhesin AtlE and Its Relationship to Sequence Type, as Revealed by Multilocus Sequence Typing of Invasive and Commensal Staphylococcus epidermidis Strains

    No full text
    We sequenced the adhesin-cell wall-anchoring domain of the atlE gene of 49 invasive and commensal Staphylococcus epidermidis strains. We identified 22 alleles, which could be separated into two main groups: group 1 (alleles 1 and 6 to 16, 32/49 strains) and group 2 (alleles 2 to 5 and 17 to 22, 17/49 strains). Allele 1 (the type strain sequence) was by far the most prevalent (21 of 49 strains). Multilocus sequence typing showed a clear relationship between the atlE allele and the sequence type (ST), with the “nosocomial” ST27 clone and closely related STs expressing group 1 alleles
    corecore