39 research outputs found

    A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond

    Get PDF
    According to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development phase of the infection is critical, when tens to hundreds of virus-associated molecules are present in the patient’s pharynx. In this study, we describe a novel universal diamond biosensor, which enables the specific detection of the virus at ultralow concentrations, even before any clinical symptoms arise. A diamond electrode is surface-functionalized with polyclonal anti-M1 antibodies, which then serve to identify the universal biomarker for the influenza virus, M1 protein. The absorption of the M1 protein onto anti-M1 sites of the electrode change its electrochemical impedance spectra. We achieved a limit of detection of 1 fg/ml in saliva buffer for the M1 biomarker, which corresponds to 5–10 viruses per sample in 5 minutes. Furthermore, the universality of the assay was confirmed by analyzing different strains of influenza A virus

    A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond

    Get PDF
    According to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development phase of the infection is critical, when tens to hundreds of virus-associated molecules are present in the patient’s pharynx. In this study, we describe a novel universal diamond biosensor, which enables the specific detection of the virus at ultralow concentrations, even before any clinical symptoms arise. A diamond electrode is surface-functionalized with polyclonal anti-M1 antibodies, which then serve to identify the universal biomarker for the influenza virus, M1 protein. The absorption of the M1 protein onto anti-M1 sites of the electrode change its electrochemical impedance spectra. We achieved a limit of detection of 1 fg/ml in saliva buffer for the M1 biomarker, which corresponds to 5–10 viruses per sample in 5 minutes. Furthermore, the universality of the assay was confirmed by analyzing different strains of influenza A virus

    The Anodization of Thin Titania Layers as a Facile Process towards Semitransparent and Ordered Electrode Material

    No full text
    Photoanodes consisting of titania nanotubes (TNTs) grown on transparent conductive oxides (TCO) by anodic oxidation are being widely investigated as a low-cost alternative to silicon-based materials, e.g., in solar light-harvesting applications. Intending to enhance the optical properties of those photoanodes, the modification of the surface chemistry or control of the geometrical characteristics of developed TNTs has been explored. In this review, the recent advancement in light-harvesting properties of transparent anodic TNTs formed onto TCO is summarized. The physical deposition methods such as magnetron sputtering, pulsed laser deposition and electron beam evaporation are the most reported for the deposition of Ti film onto TCO, which are subsequently anodized. A concise description of methods utilized to improve the adhesion of the deposited film and achieve TNT layers without cracks and delamination after the anodization is outlined. Then, the different models describing the formation mechanism of anodic TNTs are discussed with particular focus on the impact of the deposited Ti film thickness on the adhesion of TNTs. Finally, the effects of the modifications of both the surface chemistry and morphological features of materials on their photocatalyst and photovoltaic performances are discussed. For each section, experimental results obtained by different research groups are evoked

    The Impact of Side-Selective Laser Tailoring of Titania Nanotubes on Changes in Photoelectrocatalytic Activity

    No full text
    Over the last few decades, titanium(IV) oxide-based materials have gained particular attention due to their stability, corrosion resistance, photocatalytic activity under UV light, and possibilities for modification. Among various structures, TiO2 nanotubes (NTs) grown on Ti foil or glass substrates and obtained through a simple anodization process are widely used as photocatalysts or photoanodes. During the anodization process, the geometry of the nanotubes (length, distribution, diameter, wall thickness, etc.) is easily controlled, though the obtained samples are amorphous. Heat treatment is required to transform the amorphous material into crystalline material. However, instead of time- and cost-consuming furnace treatment, fast and precise laser annealing is applied as a promising alternative. Nonetheless, laser treatment can result in geometry changes of TiO2 NTs, consequently altering, their electrochemical activity. Moreover, modification of the TiO2 NTs surfaces with transition metals and further laser treatment can result in materials with unique photoelectrochemical properties. In this regard, we gathered the latest achievements in the field of laser-treated titania for this review paper. We mainly focused on single structural and morphological changes resulting from pulsed laser annealing and their influence on the electrochemical properties of titania. Finally, the theoretical basis for and combination of laser- and metal-modifications and their impact on the resulting possibilities for electrochemical water splitting are also discussed

    Laser-Assisted Synthesis and Oxygen Generation of Nickel Nanoparticles

    No full text
    Nowadays, more than ever, environmental awareness is being taken into account when it comes to the design of novel materials. Herein, the pathway to the creation of a colloid of spherical, almost purely metallic nickel nanoparticles (NPs) through pulsed laser ablation in ethanol is presented. A complex description of the colloid is provided through UV-vis spectroscopy and dynamic light scattering analysis, ensuring insight into laser-induced nanoparticle homogenization and size-control of the NPs. The transmission electron spectroscopy revealed spherical nanoparticles with a narrow size distribution, whereas the energy-dispersive X-ray spectroscopy accompanied by the X-ray photoelectron spectroscopy revealed their metallic nature. Furthermore, an example of the application of the colloidal nanoparticles is presented, where a quick, five-min ultrasound modification results in over an order of magnitude higher current densities in the titania-based electrode for the oxygen evolution reaction

    Scanning with Laser Beam over the TiO<sub>2</sub> Nanotubes Covered with Thin Chromium Layers towards the Activation of the Material under the Visible Light

    No full text
    This work presents pulsed UV laser treatment (355 nm, 2 Hz) of TiO2 nanotubes decorated with chromium oxides. The modification was performed in a system equipped with a beam homogenizer, and during the irradiation, the samples were mounted onto the moving motorized table. In such a system, both precisely selected areas and any large area of the sample can be modified. Photoelectrochemical tests revealed photoresponse of laser-treated samples up to 1.37- and 18-fold under the illumination with ultraviolet-visible and visible light, respectively, in comparison to bare titania. Optimal beam energy fluence regarding sample photoresponse has been established. Scanning electron microscopy images, X-ray diffraction patterns, along with Raman and X-ray photoelectron spectra, suggest that the enhanced photoresponse results from changes solely induced in the layer of chromium oxides. It is believed that the results of the present work will contribute to a wider interest in laser modification of semiconductors exhibiting improved photoelectrochemical activity

    Barwnikowe ogniwa sƂoneczne [Dye-sensitized solar cells]

    No full text
    This paper studies color photovoltaic cells - their construction, manufacture, characteristics and application. Color photovoltaic cells are third generation cells, using a non-silicon technology based on new functional materials, such as nanoparticles of metals, metal oxides and conductive polymers. In comparison to typical silicon cells, color photovoltaic cells don't require a very clean atmosphere and the ability to control the color or transparency of a photovoltaic cell allows for a wide range of applications: as shadowing surfaces, building fronts or decorative parts.</p

    Fundamentals of solar energy

    No full text
    The spectrum of solar light which approaches earth's surface changes due to interactions of light with earth's atmosphere. It is clearly seen that the interaction of radiation with the ozone sheath significantly reduces the amount of potentially hazardous UV radiation. In order to enable better photovoltaic (PV) design and planning the global horizontal irradiance (GHI) has been defined which corresponds to the total amount of shortwave radiation received from the sun by a surface horizontal to the ground. This value includes two fluxes: direct normal irradiance (DNI) and diffuse horizontal irradiance (DIF). DNI represents the solar radiation that comes in a straight line from the sun at its current position in the sky. Solar energy is converted into direct current (DC) by photovoltaic modules. The produced direct current passes through a voltage regulator and is then stored in accumulators

    Free-standing TiO2TiO_{2} nanotubes decorated with spherical nickel nanoparticles as a cost-efficient electrocatalyst for oxygen evolution reaction

    No full text
    Here, we report significant activity towards the oxygen evolution reaction (OER) of spherical nickel nanoparticles (NPs) electrodeposited onto free-standing TiO(2) nanotubes (TNT) via cyclic voltammetry. It has been shown that simple manipulation of processing parameters, including scan rate and number of cycles, allows for formation of the NPs in various diameters and amounts. The polarization data with respect to transmission electron microscopy (TEM) allowed for determination of the diameter and propagation depth of the Ni NPs leading to the highest activity towards the OER with an overpotential of 540 mV at +10 mA cm(−2) and Tafel slope of 52 mV per decade. X-ray photoelectron spectroscopy (XPS) indicates the presence of structure defects within Ni NPs whereas Mott–Schottky analysis provides information on the anodically shifted flat band potential and highly increased donor density. The obtained results along with literature studies allowed a proposal of the origin of the enhancement towards the OER. We believe that combination of transition metal-based NPs and TNT provides valuable insight on efficient and low-cost electrocatalysts
    corecore