64 research outputs found

    Induction of collagen expression during inter-sertoli Tight Junction (TJ) assembly in vitro

    Get PDF
    published_or_final_versio

    Extracellular matrix (ECM) regulates the dynamics of tight junctions (TJs) in the testis possibly via its interactions with cytokines and proteases

    Get PDF
    Abstract no. 646published_or_final_versio

    Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases

    Get PDF
    When Sertoli and germ cells were co-cultured in vitro in serum-free chemically defined medium, functional anchoring junctions such as cell-cell intermediate filament-based desmosome-like junctions and cell-cell actin-based adherens junctions (e.g. ectoplasmic specialization (ES)) were formed within 1-2 days. This event was marked by the induction of several protein kinases such as phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (PKB; also known as Akt), p21-activated kinase-2 (PAK-2), and their downstream effector (ERK) as well as an increase in PKB intrinsic activity. PI3K, phospho (p)-PKB, and PAK were co-localized to the site of apical ES in the seminiferous epithelium of the rat testis in immunohistochemistry studies. Furthermore, PI3K also co-localized with p-PKB to the same site in the epithelium as determined by fluorescence microscopy, consistent with their localization at the ES. These kinases were shown to associate with ES-associated proteins such as β1-integrin, phosphorylated focal adhesion kinase, and c-Src by co-immunoprecipitation, suggesting that the integrin-laminin protein complex at the apical ES likely utilizes these protein kinases as regulatory proteins to modulate Sertoli-germ cell adherens junction dynamics via the ERK signaling pathway. To validate this hypothesis further, an in vivo model using AF-2364 (1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide) to perturb Sertoli-germ cell anchoring junction function, inducing germ cell loss from the epithelium in adult rats, was used in conjunction with specific inhibitors. Interestingly, the event of germ cell loss induced by AF-2364 in vivo was also associated with induction of PI3K, p-PKB, PAK-2, and p-ERK as well as a surge in intrinsic PKB activity. Perhaps the most important of all, pretreatment of rats with wortmannin (a PI3K inhibitor) or anti-β1-integrin antibody via intratesticular injection indeed delayed AF-2364-induced spermatid loss from the epithelium. In summary, these results illustrate that Sertoli-germ cell anchoring junction dynamics in the testis are regulated, at least in part, via the β1-integrin/PI3K/PKB/ERK signaling pathway. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.postprin

    Hypermethylation of SOX2 gene in hydatidiform mole and choriocarcinoma

    Get PDF
    This study investigated the expression and methylation profiles of SOX2, a stem cell-related transcription factor, in placentas and gestational trophoblastic disease. The methylation status of SOX2 promoter region in 55 hydatidiform moles, 4 choriocarcinoma, 23 first trimester, and 15 term placentas was evaluated by methylation-specific polymerase chain reaction. The methylated allele was found in 4.4% (1/23) of first trimester placentas, 26.7% (4/15) term placentas, and 56.4% (31/55) of hydatidiform moles and all choriocarcinoma samples and cell lines. A significant reduction in SOX2 messenger RNA expression was found in the hydatidiform moles (P = .027) when compared with that in the placentas. SOX2 messenger RNA expression was significantly correlated with SOX2 hypermethylation (P < .001). SOX2 expression was restored in choriocarcinoma cell lines following treatment to 5-Aza-2(')-deoxycytidine and/or Trichostatin A, demethylation and histone deacetylase inhibitors, respectively, and the response was synergistic. Epigenetic mechanisms may play important role on the transcriptional regulation of SOX2 and contribute to pathogenesis of gestational trophoblastic disease.link_to_subscribed_fulltex

    Overexpression of Hexokinase 2 (HK2) in ovarian cancer contributes to cell migration, invasion and cancer stem-like cells regulation and correlates with poor patient survival

    Get PDF
    Poster Session - Carcinogenesis 1: abstract no. 144Conference Theme: Anticancer Drug Action and Drug Resistance: From Cancer Biology to the ClinicINTRODUCTION: Altered glucose metabolism is a new hallmark for cancer. High lactate production and low glucose oxidation, regardless of the oxygen availability, known as the Warburg effect (aerobic glycolysis), are commonly found in cancers. Hexokinase 2 (HK2) converts glucose to glucose-6- phosphate, the first committed step in glycolysis. HK2 regulates glycolysis and tumorigenesis in different human cancers, yet the mechanisms remain poorly defined. In this study, we investigate the clinical significance, effects and mechanisms of HK2 on cell migration, invasion and cancer ...postprin

    Paradoxical Impact of Two Folate Receptors, FRα and RFC, in Ovarian Cancer: Effect on Cell Proliferation, Invasion and Clinical Outcome

    Get PDF
    Despite being an essential vitamin, folate has been implicated to enhance tumor growth, as evidenced by reports on overexpression of folate receptor alpha (FRα) in carcinomas. The role of another folate transporter, reduced folate carrier (RFC), is largely unknown. This study investigated the roles of folate, FRα and RFC in ovarian cancers. We demonstrated FRα mRNA and protein overexpression and reduced RFC expression in association with FRα gene amplification and RFC promoter hypermethylation, respectively. FRα overexpression was associated with tumor progression while RFC expression incurred a favorable clinical outcome. Such reciprocal expression pattern was also observed in ovarian cancer cell lines. Folate was shown to promote cancer cell proliferation, migration and invasion in vitro, and down-regulate E-cadherin expression. This effect was blocked after either stable knockdown of FRα or ectopic overexpression of RFC. This hitherto unreported phenomenon suggests that, RFC can serve as a balancing partner of FRα and confer a protective effect in patients with high FRα-expressing ovarian carcinomas, as evidenced by their prolonged overall and disease-free survivals. In conclusion, we report on the paradoxical impact of FRα (putative oncogenic) and RFC (putative tumor suppressive) in human malignancies. FRα and RFC may potentially be explored as therapeutic target or prognostic marker respectively. We recommend caution and additional research on folate supplements in cancer patients. © 2012 Siu et al.published_or_final_versio

    Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers

    Get PDF
    Ovarian cancer is the most lethal of all gynecological malignancies, and the identification of novel prognostic and therapeutic targets for ovarian cancer is crucial. It is believed that only a small subset of cancer cells are endowed with stem cell properties, which are responsible for tumor growth, metastatic progression and recurrence. NANOG is one of the key transcription factors essential for maintaining self-renewal and pluripotency in stem cells. This study investigated the role of NANOG in ovarian carcinogenesis and showed overexpression of NANOG mRNA and protein in the nucleus of ovarian cancers compared with benign ovarian lesions. Increased nuclear NANOG expression was significantly associated with high-grade cancers, serous histological subtypes, reduced chemosensitivity, and poor overall and disease-free survival. Further analysis showed NANOG is an independent prognostic factor for overall and disease-free survival. Moreover, NANOG was highly expressed in ovarian cancer cell lines with metastasis-associated property and in clinical samples of metastatic foci. Stable knockdown of NANOG impeded ovarian cancer cell proliferation, migration and invasion, which was accompanied by an increase in mRNA expression of E-cadherin, caveolin-1, FOXO1, FOXO3a, FOXJ1 and FOXB1. Conversely, ectopic NANOG overexpression enhanced ovarian cancer cell migration and invasion along with decreased E-cadherin, caveolin-1, FOXO1, FOXO3a, FOXJ1 and FOXB1 mRNA expression. Importantly, we found Nanog-mediated cell migration and invasion involved its regulation of E-cadherin and FOXJ1. This is the first report revealing the association between NANOG expression and clinical outcome of patients with ovarian cancers, suggesting NANOG to be a potential prognostic marker and therapeutic molecular target in ovarian cancer.Oncogene advance online publication, 3 September 2012; doi:10.1038/onc.2012.363.postprin

    Dynamic cross-talk between cells and the extracellular matrix in the testis

    No full text
    In the seminiferous tubule of the mammalian testis, one type A1 spermatogonium (diploid, 2n) divides and differentiates into 256 spermatozoa (haploid, n) during spermatogenesis. To complete spermatogenesis and produce ∼150 × 106 spermatozoa each day in a healthy man, germ cells must migrate progressively across the seminiferous epithelium yet remain attach to the nourishing Sertoli cells. This active cell migration process involves precisely controlled restructuring events at the tight (TJ) and anchoring junctions at the cell-cell interface. While the hormonal events that regulate spermatogenesis by follicle-stimulating hormone and testosterone from the pituitary gland and Leydig cells, respectively, are known, less is known about the mechanism(s) that regulates junction restructuring during germ cell movement in the seminiferous epithelium. The relative position of tight (TJs) and anchoring junctions in the testis is of interest. Sertoli cell TJs that constitute the blood-testis barrier (BTB) are present side by side with anchoring junctions and are adjacent to the basement membrane. This intimate physical association with the TJs, the anchoring junctions and the basement membrane (a modified form of extracellular matrix, ECM) suggests a role for the ECM in the junction dynamics of the testis. Indeed, evidence is accumulating that ECM proteins are crucial to Sertoli cell TJ dynamics. In this review, we discuss the pivotal role of tumor necrosis factor α (TNFα) on BTB dynamics via its effects on the homeostasis of ECM proteins. In addition, discussion will also be focused on the novel findings regarding the role of non-basement-membrane-associated ECM proteins and components of focal adhesion (a cell-matrix anchoring junction type) in the regulation of junction dynamics in the testis. © 2004 Wiley Periodicals, Inc.link_to_subscribed_fulltex

    The blood-follicle barrier (BFB) in disease and in ovarian function

    No full text
    The blood-follicle barrier (BFB) is one of the blood-tissue barriers in mammalian body found in developing follicles in the ovary. The BFB, besides the tight junction (TJ)-permeability barrier of the endothelial cells in the microvessels that surround the developing follicle, is constituted and contributed significantly by the basement membrane of the developing follicle which alters its composition rapidly during follicle development. While the concept of the BFB and its ultrastructure were described more than six decades ago, fewer than 20 reports are found in the literature that were dedicated to investigate the biology, regulation, and function of the BFB either in health or in disease. Furthermore, detailed analysis of the adhesion protein complexes and the regulation of the junction dynamics at the BFB are still missing in the literature. The goal of this short chapter is to provide an update on this important blood-tissue barrier, it is obvious that future investigation is much needed in the field to understand this ultrastructure better in order to treat and better ovarian disorders including ovarian cancer
    • …
    corecore