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Abstract

Despite being an essential vitamin, folate has been implicated to enhance tumor growth, as evidenced by reports on
overexpression of folate receptor alpha (FRa) in carcinomas. The role of another folate transporter, reduced folate carrier
(RFC), is largely unknown. This study investigated the roles of folate, FRa and RFC in ovarian cancers. We demonstrated FRa
mRNA and protein overexpression and reduced RFC expression in association with FRa gene amplification and RFC
promoter hypermethylation, respectively. FRa overexpression was associated with tumor progression while RFC expression
incurred a favorable clinical outcome. Such reciprocal expression pattern was also observed in ovarian cancer cell lines.
Folate was shown to promote cancer cell proliferation, migration and invasion in vitro, and down-regulate E-cadherin
expression. This effect was blocked after either stable knockdown of FRa or ectopic overexpression of RFC. This hitherto
unreported phenomenon suggests that, RFC can serve as a balancing partner of FRa and confer a protective effect in
patients with high FRa-expressing ovarian carcinomas, as evidenced by their prolonged overall and disease-free survivals. In
conclusion, we report on the paradoxical impact of FRa (putative oncogenic) and RFC (putative tumor suppressive) in
human malignancies. FRa and RFC may potentially be explored as therapeutic target or prognostic marker respectively. We
recommend caution and additional research on folate supplements in cancer patients.
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Introduction

Ovarian carcinomas account for the highest mortality amongst

all gynecological cancers in the world [1,2]. While the incidence of

ovarian carcinomas varies between different ethnic groups, its

incidence in Asian countries is on a rising trend [3,4]. The reasons

for this remain largely unknown or controversial. Several lifestyle

risk factors have been implicated. These include diet, obesity,

fertility and parity statuses. On the other hand, it has became a

general belief that high intake of micronutrients such as folate,

vitamin C, vitamin E may protect against cancers [5]. As such,

better understanding of the effects of nutritional elements on

carcinogenesis is important to improve the strategies for cancer

prevention and management.

Folate is a water-soluble B vitamin found in most vegetables. A

high dietary folate intake has been reported to associate with a

lower risk of developing ovarian cancers, in particular, those who

consume alcohol [6,7,8,9]. It is closely related to its function on

DNA synthesis and its involvement in the related methionine

metabolic pathway essential for DNA methylation. Folate

deficiency would therefore leads to DNA hypomethylation, altered

gene expression and the misincorporation of uracil into DNA,

leading to chromosome damage, all of which, are key factors for

carcinogenesis [10,11]. It would appear that folate is an important

vitamin essential in normal functioning of cells, and to prevent the

initiation of cancer. However, there is increasing evidence to show

that folate may in fact enhance cancer progression in established

carcinomas of colon and rectum, breast and prostate [12,13,14].

Folate uptake involves several transporters, such as folate

receptors, and reduced folate carrier (RFC) [15,16]. Folate

receptor alpha (FRa), a single chain glycosyl-phosphatidylinosi-

tol–anchored membrane protein, enhances folate uptake through

endocytosis. Its overexpression has been reported in ovarian

cancers, implying that it may promote tumor growth

[17,18,19,20]. RFC is an ubiquitously expressed transporter for

natural folates and classical antifolates, and can control folate

uptake in a bi-directional manner [16]. Loss of RFC with

subsequent effects of folate deficiency was found to promote

cancer progression in colorectal cancer [16,21]. It would therefore

be logical to assume that these two folate transporters, FRa and

RFC, exert different effects in cancer progression.

Although overexpression of FRa in ovarian cancers has been

established, the expression status and functional roles of RFC
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remain largely unknown. In this study, we investigated the

expression, genetic and epigenetic profiles of FRa and RFC in

normal ovarian epithelium and ovarian cancer, and correlated

with clinicopathological parameters. Their functional roles and

possible downstream targets on cell proliferation, migration and

invasion in relation to folate in ovarian cancer were also assessed.

We endeavoured to better understand the roles of folate and its

transporters in ovarian carcinogenesis, and explore the possible

effects of folate intake in cancer patients.

Materials and Methods

Clinical Samples and cell lines
One hundred and fifty three formalin-fixed paraffin embedded

samples of ovarian tumors, including 11 inclusion cysts/benign

cystadenomas (22–63 years; mean age, 50 years), 19 borderline

tumors (20,46 years; mean age, 30 years), 83 carcinomas (34 to

83 years; mean 51 years) of different histological subtypes and 44

corresponding metastatic foci (Table 1), were collected from the

Department of Pathology, Queen Mary Hospital, the University of

Hong Kong. All patients underwent surgery and 67 patients with

ovarian cancers were also treated with chemotherapy including

platinum/paclitaxel. The follow-up period ranged from five to 209

months (mean 63 months). Thirty three randomly selected clinical

samples of ovarian tumors and their corresponding normal

counterparts, including fallopian tubes and/or contralateral

ovaries, with available frozen blocks were also retrieved. Informed

consent was obtained by all patients and the use of these clinical

samples was approved by Institutional Review Board of the

University of Hong Kong/Hospital Authority Hong Kong West

Cluster (HKU/HA HKW IRB)(Institutional Review Board

number: UW10-129). Haematoxylin Eosin stained sections of

the frozen blocks of each sample were reviewed by two of us

(A.N.Y.C. and P.P.C.I.) to confirm the diagnosis and to ensure

that more than 80% tumor cells were present in the tumor blocks.

Two immortalized ovarian epithelial cell lines, HOSE 6-3 and

HOSE 17-1, and nine ovarian cancer cell lines, SKOV-3,

OVCAR-3, OVCA 420, OVCA433, OC316, Dov13, ES-2,

TOV21G, SW626 (ATCC; Manassas, VA) were cultured as

previously described [22,23].

Real-time PCR (qPCR)
Total RNA from frozen clinical samples and cancer cell lines

was extracted using Trizol reagent (Invitrogen). Genomic DNA

contamination was removed by treating with DNase I (Invitrogen)

treatment. 2.5 mg total RNA was reverse transcribed by Super-

Script Reverse Transcriptase (Invitrogen, San Diego, CA).

Genomic DNA was extracted using phenol/chloroform (Invitro-

gen). qPCR was performed with ABI Prism 7700 sequence

detection system (Applied Biosystems, Foster City, CA) as

described [22,23,24]. Primer sequences for evaluating mRNA

expression of FRa, RFC and GAPDH (as internal control) were as

follows: FRa sense, 59- AAGTGCGCAGTGGGAGCT -39, and

antisense, 59- CATTGCACAGAACAGTGGGTG -39; RFC

sense, 59- CGAAACCTCGGCTTCGGAGC -39, and antisense,

59- GCACGTAGTAGACCACCAGG -39; GAPDH sense, 59-

TCCATGACAACTTTGGTATCGTG -39, and antisense, 59-

ACAGTCTTCTGGGTGGCAGTG -39. The PCR purity was

confirmed by gel electrophoresis. Primer sequences (sense, 59-

GTATGCATGGCTTCCTGCAGG -39, and antisense, 59-

ACTTGTTAAACCCTGTAGAGAGG -39) for evaluating FRa
gene copy number were designed based on the genomic sequence

of intron 3 and intron 4 of FRa (Ensemble database). TRAT1 was

used as the reference gene [25]. Ovarian cancer samples having $

two-fold increase from their corresponding normal counterparts

were considered as positive for FRa gene amplification.

Immunoblotting
Cells were harvested with lysis buffer (0.125 M Tris, pH 6.8 at

22uC containing 1% NP-40 (v/v), 2 mM EDTA, 2 mM N-

ethylmaleimide, 2 mM PMSF, 1 mM sodium orthovanadate and

0.1 mM sodium okadate], and cleared by centrifugation at 4uC.

Protein concentration was determined by DC (detergent compatible)

protein assay (Bio-Rad Laboratories, Hercules, CA). 20 mg protein

was resolved by SDS-PAGE, transferred to polyvinylidene difluoride

membrane, and hybridized with antibodies specific to FRa (1:1000;

Alexis Biochemical, San Diego, CA; ALX-804-439), RFC (1:1000;

Affinity BioReagents; Golden, CO; PA1-9553), E-cadherin (1:5000;

BD Biosciences; Palo Alto, CA; 610182), and actin (1:1000; Sigma,

St. Louis, MO; A5060) and appropriate secondary antibodies (Santa

Cruz Biotechnology, Santa Cruz, CA). The blots were developed by

Enhanced Chemiluminescence (ECL) Plus detection system (Amer-

sham, Arlington Heights, UK), and visualized with X-ray film (Galen

Medical Group, Chattanooga, TN) [22,23,24].

Immunohistochemistry
Immunohistochemical staining was performed as described in

earlier reports [22,23,24]. For FRa immunohistochemistry,

paraffin sections were treated with goat anti-folate receptor

antibody conjugated with horse radish peroxidase (1:200; Abcam;

Cambridge, MA; ab20572). Since the anti-FRa antibody from

Alexis Biochemical used for immunoblotting failed to have

satisfactory result on immunostaining using paraffin sections,

another antibody from Abcam was used. Although this antibody

may recognize other isoforms of FR, the beta and gamme isoforms

of FR were reported to be predominantly expressed in placenta

and hematopoetic cells but not in other tissues [26,27]. This

antibody can therefore be used to detect FRa immunoreactivity in

ovarian cancers. For RFC immunohistochemistry, chicken anti-

RFC antibody (1:200; Affinity BioReagents) was applied, followed

by biotin-rabbit anti-chicken IgG (H+L). 3-diaminobenzidine-

hydrogen peroxide was used as chromogen. Microwave antigen

recovery using citrate buffer (pH 6.0) was performed. Omission or

substitution of the primary antibody with preimmune IgG serum

was used as a negative control. Intensity in stained epithelial cells

was scored as 0 (negative), 1 (faint), 2 (moderate), and 3 (strong).

The percentage of stained cells was rated as 0 (,5%), 1 (5%–

25%), 2 (26%–50%), 3 (51%–75%) and 4 (.75%). Immunoreac-

tivity was assessed by multiplying the staining intensity by the

percentage of stained cells to give a composite a composite

‘‘Histoscore’’ [22,23]. High and low levels of FRa and RFC were

defined by ‘‘HistoScores’’ cut off at mean.

Demethylation treatment
SKOV-3 and OVCA420 cells were treated with 0, 5 or 10 mM

5-Aza-29-deoxycytidine (5-aza-dc, a DNA methylation inhibitor)

for 72 hours [28]. Control cells were treated with equal volume of

dimethyl sulfoxide (DMSO). Total RNA was extracted from cells.

The transcription activity of RFC was determined by qPCR.

DNA preparation, bisulfite treatment and methylation-
specific PCR (MSP) analysis

Genomic DNA from frozen clinical samples was extracted using

phenol/chloroform. Bisulfite treatment was performed as de-

scribed [28]. Primers specific to the methylated (sense, 59-

TTCGTCGTAGTTTGCGAATG -39, and antisense, 59- CAA-

CACGTACCTAAACGCGA -39) and unmethylated (sense, 59-

FRa and RFC in Ovarian Cancer
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TTTGTTGTAGTTTGTGAATGG -39, and antisense, 59-

ACAACACATACCTAAACACAA -39) RFC promoter A were

reported previously [29]. The annealing temperature was 52uC
and 56uC for methylated and unmethylated promoter A

respectively. MSP products were detected by electrophoresis on

2% agarose gel with ethidium bromide staining. Normal

lymphocyte DNA methylated with Sssl methyltransferase was

used as positive control. Untreated genomic DNA and water

blanks without DNA were used as negative controls.

Stable knockdown of FRa, ectopic overexpression of RFC
and folate treatment in SKOV-3

SKOV-3, an ovarian cancer cell line with relatively high FRa
and low RFC expression, was used. To stable knockdown FRa,

cells were transfected with a set of shRNA constructs against

human FRa, pRS-sh FRa (Origene, Rockville, MD), selected with

puromycin (1.5 mg/ml) [22,23,24]. The pRS vector was used as

controls. To transient overexpress RFC, pcDNA3-RFC plasmid

(kindly provided by Prof L Matherly, Michigan Cancer Founda-

tion) and the empty pcDNA3 vector (control) was transfected into

control SKOV-3 cells using Lipofectamine 2000 (Invitrogen)

[22,23,24]. Cells were cultured in Medium 199 (Invitrogen)/

MCDB 105 (Sigma) medium containing 22.7 nM folic acid and

supplemented with 10% fetal bovine serum (FBS) (JRH Biosci-

ences, Lenexa, KS) [22,23]. shFRa cells and RFC overexpressing

cells (2 days after transfection) were pretreated with folate-free

RPMI 1640 medium (Invitrogen) supplemented with 10%

dialyzed FBS containing 0.6 nM folic acid (Invitrogen) for 2 days,

trysinized, counted, plated for functional assays and then treated

Table 1. Correlation of FRa and RFC immunoreactivities with different diagnostic categories and clinicopathological parameters in
ovarian cancer.

Characteristics Case (n) FRa RFC

Mean ± SD P-value Mean ± SD P-value

Diagnostic categories

Cysts/benign 11 1.7561.30 5.3663.11

Borderline 19 3.9662.47 4.5063.06

Carcinomas 83 7.1063.25 ,0.001* 2.9462.33 ,0.008*

Carcinomas{ 21 8.1463.06 2.4562.40

Metastatic foci{ 44 7.6063.18 0.522{ 3.1161.80 0.128{

Stage (FIGO)

I 28 5.9462.83 2.4561.90

II 12 8.3563.36 3.3861.98

III 25 7.7263.22 3.6062.52

IV 14 7.1463.56 0.092* 2.5762.87 0.188*

I 28 5.9462.83 2.4561.90

II–IV 51 7.7163.31 0.022{ 3.2762.50 0.113{

Histological grade

1 18 5.6861.94 3.6762.46

2 38 7.2163.39 2.6162.16

3 25 8.1863.47 0.042* 2.8062.30 0.262*

Low (1) 18 5.6861.94 3.6762.46

High (2–3) 63 7.6063.43 0.022{ 2.6862.20 0.123{

Histology

Serous 30 8.5363.30 3.2362.85

Clear Cell 20 5.1362.74 2.5062.43

Endometrioid 26 7.6062.83 3.0261.73

Mucinous 7 4.7161.90 0.001* 2.6461.55 0.780*

Non-mucinous 76 7.3263.27 2.9762.39

Mucinous 7 4.7161.90 0.027{ 2.6461.55 0.947{

Chemosensitivity1

Sensitive 56 7.3863.29 2.9962.30

Resistant 15 6.3463.03 0.259{ 2.5062.21 0.564{

Intensity values are expressed as ‘‘Histoscores’’ as specified in Methods.
*Kruskal–Wallis rank test;
{Mann-Whitney test;
{Randomly selected primary carcinomas with matched metastatic foci.
1Chemosensitive-patients remained disease free more than 6 months after completion of first-line chemotherapy.
Those with significant P-values are underlined.
doi:10.1371/journal.pone.0047201.t001
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with different doses of folic acid, a synthetic folate, including 0, 6,

12 and 60 nM. The folic acid concentrations used are based on

the physiological range in plasma, which ranges from ,7 nM in

individuals with a negative folate balance to .50 nM in

individuals with .400 mg/d of folate consumption [30], which is

the estimated folate intake by supplement nonusers in North

America [13]. The folic acid deficiency concentration selected

(12 nM) was based on the observation that such concentration is

Figure 1. Overexpression of FRa in ovarian cancer. (A) qPCR analysis of FRa mRNA in ovarian tumors and the corresponding non-tumor
counterparts. (B) mRNA (upper panel) and protein (lower panel) expression of FRa in two immortalized ovarian epithelial cell lines, HOSE 6-3 and
HOSE-17-1, and nine ovarian cancer cell lines, OVCAR-3, SKOV-3, OVCA 420, OVCA433, OC316, Dov13, ES-2, TOV21G, SW626, as assessed by qPCR and
immunoblotting respectively. (C) Immunoreactivity of FRa in serous (a) and mucinous (e) benign ovarian cystadenomas, serous (b) and mucinous (f)
borderline ovarian tumors and serous (c), mucinous (g), clear cell (d) and endometrioid (h) ovarian carcinomas. Scale bar = 100 mm. (D) Kaplan-Meier
overall (left panel) and disease-free (right panel) survival curves for ovarian cancer patients with high and low levels of FRa (cut off at mean).
doi:10.1371/journal.pone.0047201.g001

FRa and RFC in Ovarian Cancer
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the lowest requirement for cell growth [31]. Protein was extracted

2 days after treatment.

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl
tetrazolium bromide) assay

Cell proliferation was determined by MTT assay (Sigma) as

described [22,24]. Cells were seeded in 96-well plates with 2000

cells/well. At specific time points, 10 ml MTT was added to each

well. Plates were incubated at 37uC for 4 h, followed by addition

of 100 ml DMSO to each well for dye extraction. Cell proliferation

was determined by measuring the absorbance of samples at

570 nm with 630 nm as the reference wavelength.

In vitro migration and invasion assays
In vitro migration and invasion assays were performed as

described [22,23,24]. 1.256105 cells were plated on the upper side

of a Transwell insert and allowed to migrate through an 8-mm pore

size membrane (migration assays) or invade through a Matrigel–

coated membrane (invasion assays). Cells at the upper side of the

membrane were removed and the migrated or invaded cells were

fixed with methanol, stained with 0.5% crystal violet, and counted

under a light microscope in 5 random fields after 24 h or 48 h

respectively.

Statistical Analysis
Statistical analysis was performed using SPSS 15.0 for Windows

(SPSS Inc., Chicago, IL). Mann-Whitney test was used for

comparison between two groups whereas Kruskal–Wallis rank

test was used for comparison among multiple groups. Survival

analysis was performed by Kaplan–Meier analysis and log-rank

test. Cox regression analysis was used for multivariate survival

analysis. P values,0.05 were considered as statistically significant.

Results

Overexpression of FRa was associated with ovarian
tumor progression

By qPCR, significantly higher FRa mRNA was found in cancer

samples when compared with the corresponding non-tumor

counterparts after normalization with GAPDH (P = 0.015)

(Figure 1A). By immunohistochemistry, strong FRa immunoreac-

tivity was observed in ovarian cancers in contrast to moderate

staining of FRa in borderline tumors and weak or absence of

staining in benign cystadenomas/inclusion cysts (Figure 1C).

Indeed, significantly higher FRa immunoreactivity was detected in

ovarian cancers and borderline tumors than in benign cystadeno-

mas/inclusion cysts (all P,0.05, Table 1). At cell lines level, six out

of nine ovarian cancer cell lines also showed up-regulation of FRa
mRNA and protein expression with SKOV-3, OVCAR-3 and

SW626 showing strong expression while OVCA 420, Dov13 and

Table 2. Correlation between clinicopathological parameters and mRNA expression of FRa and RFC in ovarian cancers.

FRa RFC

Characteristics mRNA expression mRNA expression

Normal
(no. of cases)

Increased
(no. of cases) P-value*

Normal (no. of
cases)

Decreased
(no. of cases) P-value*

Stage (FIGO)

I 11 5 4 12

II 1 2 1 2

III 2 9 2 9

IV 2 1 0.062 1 2 0.920

Early (I) 11 5 4 12

Late (II–IV) 5 12 0.024 4 13 1.000

Histological grade

1 1 1 0 2

2 11 5 5 11

3 4 11 0.064 3 12 0.545

Low (1–2) 12 6 5 13

High (3) 4 11 0.037 3 12 0.699

Histology

Serous 3 9 2 10

Endometrioid 5 6 4 7

Clear Cell 4 2 1 5

Mucinous 4 0 0.052 1 3 0.695

Non-mucinous 12 17 7 22

Mucinous 4 0 0.044 1 3 1.000

Serous 3 9 2 10

Non-serous 13 8 0.071 6 15 0.443

*Fisher’s exact test. Those with significant P-values are underlined.
doi:10.1371/journal.pone.0047201.t002

FRa and RFC in Ovarian Cancer
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TOV21G showed weak expression when compared with two

normal ovarian epithelium cell lines in which no FRa mRNA and

protein expression was detected (Figure 1B).

In clinical samples, high FRa mRNA expression and immuno-

reactivity were found to be significantly associated with advanced

stages of disease and poor histological grade, factors associated

with tumor aggressiveness (Tables 1 and 2). However, no

significant difference of FRa immunoreactivity was found between

the chemosensitive and chemoresistant cases (Table 1). Kaplan-

Meier-survival analyses also did not reveal association between

high FRa expression and overall or disease-free survival

(Figure 1D).

RFC was down-regulated in ovarian cancers and
correlated with good prognosis of patients

In contrast to FRa, ovarian cancer samples displayed signifi-

cantly lower RFC mRNA when compared with the corresponding

non-tumor counterparts as assessed by qPCR (P = 0.001)

(Figure 2A). Immunohistochemical analysis also revealed strong

RFC immunoreactivity in inclusion cysts/benign cystadenomas

and weak expression in ovarian cancers (Figure 2C). Six out of

nine ovarian cancer cell lines also displayed down-regulation of

RFC mRNA and protein expression when compared with two

normal ovarian epithelium cell lines (Figure 2B).

RFC mRNA and immunoreactivity did not correlate with

stages of disease, histological grade and histological subtypes

(Tables 1 and 2). Interestingly, there was a significant association

between low expression of RFC, and shorter overall (P = 0.034)

and disease-free (P = 0.011) survival (Figure 2D). Moreover,

among ovarian cancers with high FRa expression, the overall

(P = 0.007) and disease-free (P = 0.008) survival was significantly

longer in those with high RFC expression (Figure 2E).

FRa gene amplification and RFC promoter methylation
contributed to dysregulated gene expression in ovarian
cancers

By qPCR, 11 out of 33 (33.3%) cancer samples displayed FRa
gene (FOLR1, chromosome 11q13.3) amplification when com-

pared with the corresponding non-tumor counterparts. All

amplified cases showed elevated mRNA expression. FRa ampli-

fication was correlated with its mRNA expression (P,0.001,

Fisher’s exact test) (Table 3).

On the other hand, reduced expression of RFC in ovarian

cancers was related to hypermethylation. After treatment of

SKOV-3 and OVCA420 ovarian cancer cells by 5-aza-dc, a DNA

methylation inhibitor, two-fold and 2.5-fold increase of RFC gene

expression was detected respectively (Figure 3A). Furthermore,

promoter hypermethylation of RFC gene (chromosome 21q22.2)

was found in 14 out of 33 (42.4%) ovarian cancer samples by

MSP. Representative examples of MSP were shown in Figure 3B.

In contrast, only 3 out of 33 (9%) of non-tumor samples showed

hypermethylation. Unmethylated alleles were detected in all tumor

and non-tumor samples. Promoter hypermethylation of RFC

significantly inversely correlated with its mRNA expression

(P = 0.005, Fisher’s exact test) (Table 3). By MSP, we also detected

RFC promoter hypermethylation in five ovarian cancer cell lines

SKOV-3, OVCA 420, OVCA433, TOV21G and SW626

(Figure 3B), all of them showed down-regulated RFC mRNA

and protein expression (Figure 2B). In contrast, no methylated

alleles were detected (Figure 3B) in the normal ovarian epithelium

cell line HOSE 6-3 and two cancer cell lines OVCAR-3 and

OC316, which displayed RFC mRNA and protein expression

(Figure 2B),

Figure 2. Down-regulation of RFC in ovarian cancers and correlation with prognosis of patients. (A) qPCR analysis of RFC mRNA in
ovarian tumors and the corresponding non-tumor counterparts. (B) mRNA (upper panel) and protein (lower panel) expression of RFC in two
immortalized ovarian epithelial cell lines, HOSE 6-3 and HOSE-17-1, and nine ovarian cancer cell lines, SKOV-3, OVCAR-3, OVCA 420, OVCA433, OC316,
Dov13, ES-2, TOV21G, SW626, as assessed by qPCR and immunoblotting respectively. (C) Immunoreactivity of RFCin inclusion cyst (a) and serous
ovarian carcinomas (b). Scale bar = 100 mm. (D) Kaplan-Meier overall (left panel) and disease-free (right panel) survival curves for ovarian cancer
patients with high and low levels of RFC (cut off at mean). (E) Kaplan-Meier overall (left panel) and disease-free (right panel) survival curves for high
FRa expressed ovarian cancer patients with high and low levels of RFC (cut off at mean).
doi:10.1371/journal.pone.0047201.g002

FRa and RFC in Ovarian Cancer
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Knockdown of FRa altered folate-mediated cell
proliferation in SKOV-3 cells

After confirming the specific knockdown of FRa mRNA and

protein expression in SKOV-3 cells (Figure 4A), we first

determined the effects of FRa on folate-mediated cell proliferation

by MTT assay. On days 2 and 4, no significant change of cell

proliferation was found in control and shFRa SKOV-3 cells after

folate treatment. By day 6, control cells showed proliferation in 12

and 60 nM folate treatment. On Day 8, 6, 12 and 60 nM folate-

treated control cells showed does-dependent proliferation. In

contrast, knockdown of FRa blocked folate-mediated cell prolif-

eration (Figure 4B).

Folate through FRa induced SKOV-3 cell migration and
invasion and down-regulated E-cadherin

Next, we tested the effect of folate and FRa on SKOV-3 cell

migration and invasion. Based on the effects of folate on cell

proliferation, 12 and 60 nM doses were chosen for treating control

and shFRa SKOV-3 cells. Transwell migration and invasion

assays showed that 12 and 60 nM folate significantly induced cell

migration and invasion in control cells whereas knockdown of FRa
blocked folate-mediated cell migration and invasion (Figure 4C).

We then determined the possible downstream target for folate

mediated effect on cell migration and invasion. The expression of

E-cadherin, an important cell–cell adhesion molecule essential for

regulating cell motility, was found to be reduced does-dependently

after folate treatment (Figure 4D). Such down-regulation of E-

Figure 3. Promoter hypermethylation of RFC gene in ovarian cancers. (A) The relative mRNA expression of RFC in SKOV-3 and OVCA 420
after 5-aza-dc treatment with indicated concentrations for 72 hours. Each experiment was performed in triplicate. Bars, means of fold change 6SD. *,
P,0.05. (B) Representative ovarian cancers (CA) (upper panel) and ovarian cell lines (lower panel) of MSP on RFC methylation status. M, DNA marker;
P, positive control; N, negative control; M, methylated alleles; U, unmethylated alleles.
doi:10.1371/journal.pone.0047201.g003

Table 3. Correlation of FRa amplification and RFC promoter methylation with their mRNA expression in ovarian cancers.

FRa Gene amplification P-value (Fisher’s exact test)

Non-amplified (no. of cases) Amplified (no. of cases)

mRNA expression Normal (no. of cases) 16 0 ,0.001

Increased (no. of cases) 6 11

RFC Promoter DNA methylation P-value (Fisher’s exact test)

Unmethylated (no. of cases) Methylated (no. of cases)

mRNA expression Normal (no. of cases) 8 0 0.005

Decreased (no. of cases) 11 14

doi:10.1371/journal.pone.0047201.t003

FRa and RFC in Ovarian Cancer
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Figure 4. Folate induced SKOV-3 cell proliferation, migration and invasion and down-regulated E-cadherin through FRa. (A) Stable
knockdown of FRa mRNA and protein in SKOV-3 as detected by qPCR (left panel) and immunoblotting (right panel) respectively. **, P,0.005. (B) Cell
proliferation rate of control and shFRa SKOV-3 cells treated with 6, 12 and 60 nM folate at 2, 4, 6 and 8 days displayed as fold change relative to
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cadherin after folate treatment was also abrogated after knock-

down of FRa.

Ectopic overexpression of RFC in high FRa-expressing
SKOV-3 counteracted folate-mediated cell proliferation,
migration and invasion and restored E-cadherin
expression

We have demonstrated overexpression of FRa and reduced

expression of RFC in ovarian cancers, suggesting that they may

exert opposite roles in the progression of ovarian cancer. More

importantly, in patients with high FRa, the overall and disease-

free survival was significantly longer in those with high RFC

expression, implicating the protective role of RFC in high FRa
cancers. To elucidate such protective role, in vitro functional studies

were performed on FRa-positive SKOV-3 cells with ectopically

expressed RFC after folate treatment. RFC was found to

counteract folate-mediated cell proliferation (Figure 5A), migration

and invasion (Figure 5B). Moreover, down-regulation of E-

control without folate treatment (0 nM). n = 3; *, P,0.05. (C) In vitro migration (left panel) and invasion assays (right panel) in control and shFRa
SKOV-3 cells treated with 0, 12 and 60 nM folate using Transwell membrane without or with Matrigel coating respectively. Upper panels:
representative images of migrating or invading SKOV-3 cells. Lower panels: Cell migration or invasion from SKOV-3 presented as percentage of
control treated with 0 nM folate; n = 3; *, P,0.05; **, P,0.005. (D) Immunoblotting on FRa and E-cadherin using protein lysates prepared from control
and shFRa SKOV-3 (left panel). Relative E-cadherin protein level as analyzed by ImageJ software (US National Institutes of Health); n = 3; *, P,0.05; **,
P,0.005 (right panel).
doi:10.1371/journal.pone.0047201.g004

Figure 5. Ectopic overexpression of RFC in FRa-positive SKOV-3 counteracted folate-mediated cell proliferation, migration and
invasion, and down-regulation of E-cadherin. (A) Cell proliferation rate of SKOV-3 cells with ectopically expressed RFC or control vector
(control) treated with 60 nM folate after 5 days displayed as fold change compared to control without folate treatment (0 nM); n = 3; *, P,0.05. (B) In
vitro migration (left panel) and invasion assays (right panel) in SKOV-3 cells with ectopically expressed RFC or control vector treated with 0 and 60 nM
folate displayed as percentage of control treated with 0 nM folate; n = 3; *, P,0.05; **, P,0.005. (C) Immunoblotting of RFC and E-cadherin using
protein lysates prepared from SKOV-3 cells with ectopically expressed RFC or control vector (left panel). Relative E-cadherin protein level as analyzed
by ImageJ software (US National Institutes of Health); n = 3; **, P,0.005 (right panel).
doi:10.1371/journal.pone.0047201.g005
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cadherin in cells after folate treatment was also abrogated after

overexpressing RFC (Figure 5C).

Discussion

In this study, we demonstrated the progressive increase in FRa
mRNA and protein expression from non-tumor tissues, benign

and borderline tumors to carcinomas. In addition, FRa gene

amplification as a possible mechanism of its overexpression was

also demonstrated for the first time in ovarian cancers. Overex-

pression of FRa in ovarian cancers [19,20] as well as in cancers of

kidney, lung and breast have been previously reported [32]. Our

results also indicate that a high FRa expression correlates with

poor histological grade and advanced stages of disease, suggesting

its roles in ovarian tumor progression.

In contrast to FRa, a lower RFC mRNA and protein expression

in ovarian cancers was found when comparing with normal tissues

or benign tumors. RFC is ubiquitously expressed in normal tissue

and is the major folate transport system for transporting natural

folates, such as 5-methyl or 5-formyl tetrahydrofolate (THF), and

antifolates such as methotrexate (MTX) and pemetrexed [16]. 5-

methyl THF is a cofactor essential for DNA methylation which

normally leads to the suppression of oncogenes [33]. Thus, loss of

RFC has been described to contribute to colonic carcinogenesis

[21]. In this study, we found that reduced expression of RFC was

significantly associated with shorter overall and disease-free

survivals, suggesting that RFC may be considered as a marker

for good prognosis in ovarian cancer patients. Moreover, among

patients with high FRa expressing ovarian cancers, the overall and

disease-free survival was significantly better in those with high

RFC expression than those without, implicating the protective role

of RFC for patients with these tumors.

We also demonstrated that FRa amplification and RFC

promoter methylation correlated with mRNA expression in ovarian

cancers. In earlier reports, RFC promoter methylation has been

found in breast cancer cells [34] and primary lymphomas [35]. Our

findings suggested that up-regulation of FRa (a putative oncogenic

folate transporter) and down-regulation of RFC (a putative tumor

suppressor type folate transporter) were controlled genetically and

epigenetically respectively during ovarian cancer development.

As noted in the introduction above, folate is essential for DNA

synthesis [12,13,14], thereby indirectly exerts its effect on cell

proliferation. Overexpression of the FRa in NIH/3T3 cells has

been reported to induce increased cell growth in vitro and in vivo

[36]. Using folate at various dosages ranging from 12 nM

(considered as dietary deficient in North America) to 60 nM

(considered normal for supplement non-users), we were able to

demonstrate cell proliferation in FRa-positive SKOV-3 cells [13].

Conversely, when the FRa was knockdown by shRNA approach,

this folate-mediated cell proliferation in SKOV-3 cells was lost,

confirming the fact that folate indeed transports through FRa
during the process of ovarian cancer cell proliferation. Similarly,

intracellular expression of anti-FR antibodies in ovarian cancer

cells has been reported to exert growth inhibitory effects as shown

by reduced colony formation in soft agar [37].

Besides its effects on cell proliferation, we also demonstrated for

the first time that folate increased SKOV-3 cell migration and

invasion, possibly through the downregulation of cell-cell adhesion

molecule E-cadherin. This effect was abrogated after the

knockdown of FRa. In ovarian cancer, reduced E-cadherin

expression has been described in the metastases but not in the

corresponding primary ovarian tumors [38]. Patients with such

loss of E-cadherin expression were found to have significantly

shorter survival [39]. Moreover, simultaneous expression of

caveolin-1 and E-cadherin in ovarian cancer cells stabilized

adherens junctions through inhibition of src-related kinases [40]

whereas loss of E-cadherin enhanced ovarian cancer metastasis

through up-regulation of a5-integrin [41]. In our study, we were

able to show E-cadherin down-regulation in folated-treated

SKOV-3 cells, suggesting that the folate-mediated enhancing

effect on ovarian cancer cell migration and invasion probably acts

through FRa via down-regulation of E-cadherin expression.

Interestingly, our study also demonstrates folate-mediated cell

proliferation, migration, invasion and E-cadherin reduction in

FRa-positive SKOV-3. Such effect is abrogated with ectopically

expressed RFC, supporting its tumour suppressive effect in FRa-

expressed cells. This in vitro finding further explains the in vivo

finding that in patients with high FRa expressing ovarian cancers,

the overall and disease-free survival was significantly longer in

those with concomitant high RFC expression.

It has been suggested that vitamin supplements, including folate,

is beneficial to health. Folate is usually taken as folic acid, its

synthetic form, which is fortified in many food products.

Supplementation is often believed to be of value to those who

suffer from long-term illnesses. Nevertheless, the beneficial effect of

folate supplement among cancer patients is controversial

[12,13,14]. Earlier studies have shown that folate plays a dual

role in colorectal, breast and prostate cancers [12,13,14]. Our

results also indicated that folate may potentially enhance the

progression and growth of ovarian cancer cells, in particular, those

with high FRa and low RFC expressions. Although folate may

prevent cancer initiation, once the neoplasia is established, it

appears to enhance cancer progression. Should folate supple-

ments, generally considered by the public as a healthy option,

therefore be taken more cautiously? Additional studies to further

explore the benefits or harmful effects of folate supplement in

cancer patients are necessary.

In conclusion, we demonstrated that folate and FRa contribute

to the progression and growth of ovarian cancer cells through the

regulation of cell proliferation, migration and invasion. In contrast,

RFC can serve as a balancing partner of FRa and seems to exert a

protective role in ovarian cancer patients, conferring longer

survival among patients with cancers that showed a high FRa
expression status. We also demonstrated a mechanistic link

between folate, FRa, RFC and E-cadherin. The potential of

FRa and RFC as alternative molecular therapeutic target or

prognostic marker in ovarian cancers should be further explored,

respectively.
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