8 research outputs found

    Hypermethylation of SOX2 gene in hydatidiform mole and choriocarcinoma

    Get PDF
    This study investigated the expression and methylation profiles of SOX2, a stem cell-related transcription factor, in placentas and gestational trophoblastic disease. The methylation status of SOX2 promoter region in 55 hydatidiform moles, 4 choriocarcinoma, 23 first trimester, and 15 term placentas was evaluated by methylation-specific polymerase chain reaction. The methylated allele was found in 4.4% (1/23) of first trimester placentas, 26.7% (4/15) term placentas, and 56.4% (31/55) of hydatidiform moles and all choriocarcinoma samples and cell lines. A significant reduction in SOX2 messenger RNA expression was found in the hydatidiform moles (P = .027) when compared with that in the placentas. SOX2 messenger RNA expression was significantly correlated with SOX2 hypermethylation (P < .001). SOX2 expression was restored in choriocarcinoma cell lines following treatment to 5-Aza-2(')-deoxycytidine and/or Trichostatin A, demethylation and histone deacetylase inhibitors, respectively, and the response was synergistic. Epigenetic mechanisms may play important role on the transcriptional regulation of SOX2 and contribute to pathogenesis of gestational trophoblastic disease.link_to_subscribed_fulltex

    Activated Stat3 expression in gestational trophoblastic disease: Correlation with clinicopathological parameters and apoptotic indices

    No full text
    Aims: To assess the expression profile of the activated form of signal transducer and activator of transcription (Stat)3 in gestational trophoblastic disease (GTD) and correlate the findings with clinicopathological parameters. Methods and results: By immunohistochemistry, both cytoplasmic and nuclear expression of p-Stat3-Ser 727 was demonstrated in 88 trophoblastic tissues, including placentas and GTD. Nuclear immunoreactivity of p-Stat3-Ser 727 was significantly higher in hydatidiform mole (HM) (P < 0.001) and choriocarcinoma (P = 0.009) when compared with normal placentas. Placental site trophoblastic tumours (PSTT) and epithelioid trophoblastic tumours (ETT) also demonstrated higher nuclear p-Stat3-Ser 727 expression than their normal trophoblast counterparts. Higher p-Stat3-Ser 727 expression was confirmed in choriocarcinoma cell lines, JEG-3 and JAR, than in a normal trophoblast cell line, with both nuclear and cytoplasmic fractions demonstrated by immunoblotting. Spontaneously regressed HM showed significantly increased nuclear and cytoplasmic p-Stat3-Ser 727 immunoreactivity over those that developed gestational trophoblastic neoplasia (GTN) (P = 0.013, P = 0.039). There was a significant positive and inverse correlation between nuclear p-Stat3-Ser 727 immunoreactivity and apoptotic indices [terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labelling and M30 CytoDeath antibody] (P = 0.001, P < 0.001, Spearman's ρ test) and Bcl-2 expression (P = 0.034), respectively. Conclusions: p-Stat3-Ser 727 plays a role in the pathogenesis of GTD, probably through the regulation of apoptosis. p-Stat3-Ser 727 immunoreactivity is a potential marker in predicting GTN in HM. © 2008 The Authors.link_to_subscribed_fulltex

    Oct4 is Epigenetically Regulated by Methylation in Normal Placenta and Gestational Trophoblastic Disease

    No full text
    Oct4 is a transcription factor that plays a crucial role in maintaining pluripotency of embryonic stem cells. Down-regulation of Oct4 is associated with the differentiation of trophectoderm cell lineage, from which the normal placenta derives. We investigated the methylation and expression status of Oct4 in normal placenta and gestational trophoblastic disease (GTD) as attempts to investigate the role of Oct4 in the pathogenesis of GTD. By methylation-specific PCR, we observed both methylated and unmethylated Oct4 alleles in all 25 first trimester and 10 term placentas while 33% (18/54) of hydatidiform moles, and two choriocarcinoma cell line (JEG3 and JAR), only displayed methylated Oct4 allele. By quantitative TaqMan real-time PCR, Oct4 mRNA was significantly reduced in hydatidiform moles (P = 0.04), JEG3 and JAR (P = 0.024) when compared with normal placentas. Oct4 methylation was significantly correlated with Oct4 mRNA expression in placenta and GTD (P = 0.012). Hypermethylation in minimal promoter and exon 1 region of Oct4 were confirmed in JEG3 and JAR by bisulfite genomic sequencing. The Oct4 mRNA expression in JEG3 and JAR increased after treatment with 5-aza-2′-deoxycytidine and/or trichostatin A. Our findings suggest that Oct4 is down-regulated by hypermethylation in normal placenta and GTD and such process is important in pathogenesis of GTD. © 2008 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis

    No full text
    Epigenetic aberration is known to be important in human carcinogenesis. Promoter methylation status of RAS effector related genes, RASSF1A, RASSF2A, hDAB2IP (m2a and m2b regions) and BLU, was evaluated in 76 endometrial carcinomas and their non-neoplastic endometrial tissue by methylation specific PCR. Hypermethylation of at least one of the 5 genes was detected in 73.7% of carcinomas. There were significant correlations between methylation of hDAB2IP and RASSF1A, RASSF2A (p = 0.042, p = 0.012, respectively). Significantly, more frequent RASSF1A hypermethylation was found in Type I endometrioid carcinomas than Type II carcinomas (p = 0.049). Among endometrioid cancers, significant association between RASSF1A hypermethylation and advanced stage, as well as between methylation of hDAB2IP at m2a region with deep myometrial invasion (p < 0.05) was observed. mRNA expression of RASSF1, RASSF2A and BLU in endometrial cancer cell lines significantly increased after treatment with the demethylating agent 5-Aza-2′-deoxycytidine supporting the repressive effect of hypermethylation on their transcription. Immunohistochemical study of DNMT1 on eight normal endometrium, 16 hyperplastic endometrium without atypia, 40 atypical complex hyperplasia and 79 endometrial carcinomas showed progressive increase in DNMT1 immunoreactivity from normal endometrium to endometrial hyperplasia and endometrioid carcinomas (p = 0.001). Among carcinomas, distinctly higher DNMT1 expression was observed in Type I endometrioid carcinomas (p < 0.001). DNMT1 immunoreactivity correlated with RASSF1A and RASSF2A methylation (p < 0.05). The data suggested that hypermethylation of RAS related genes, particularly RASSF1A, was involved in endometrial carcinogenesis with possible divergent patterns in different histological types. DNMT1 protein overexpression might contribute to such aberrant DNA hypermethylation of specific tumor suppressor genes in endometrial cancers. © 2008 Wiley-Liss, Inc.link_to_subscribed_fulltex

    Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: Effects on prognosis and cell invasion

    No full text
    Ovarian cancer is a gynecological malignancy with high mortality. Therefore, the identification of novel prognostic and therapeutic targets is important. p21-activated kinases (Paks) are involved in cytoskeleton reorganization. This study investigated the clinical significance of total and phosphorylated (p) Pak1 and Pak2 as well as their functional roles in ovarian cancer. Expressions of Pak1, p-Pak1 Thr 212, Pak2 and p-Pak2 Ser 20 in ovarian normal and cancerous cell lines as well as in clinical samples of ovarian tumors were evaluated. The effects of Pak1 and Pak2 on ovarian cancer cell functions were determined. Pak1, p-Pak1 and p-Pak2 were overexpressed in ovarian cancer cell lines, and clinical samples of ovarian cancers were compared with benign ovarian lesions/inclusion cysts. Similar Pak2 expression levels were observed among normal and cancerous cell lines and clinical samples. After multiple testing correction, high Pak1 and nuclear p-Pak1 expression in ovarian cancers was significantly associated with histological type and tumor grade, respectively. Pak1 and p-Pak1 expression was associated with poor overall and disease-free survival. Pak1 was an independent prognostic factor. Knockdown of Pak1 and Pak2 in ovarian cancer cell lines reduced cell migration and invasion but did not affect cell proliferation and apoptosis. Knockdown of Pak1 also reduced p38 activation and downregulated vascular endothelial growth factor. Conversely, ectopic Pak1 overexpression enhanced ovarian cancer cell migration and invasion in a kinase-dependent manner, along with increased p38 activation. Our findings suggest that Pak1, p-Pak1 and p-Pak2 play important roles in ovarian carcinogenesis. Pak1 and p-Pak1 may be potential prognostic markers and therapeutic molecular targets in ovarian cancer. © 2010 UICC.link_to_subscribed_fulltex
    corecore