2 research outputs found

    Biodegradable Pea Protein Fibril Hydrogel-Based Quasi-Solid-State Zn-Ion Battery

    No full text
    Zinc-ion batteries show great potential as the next-generation power source due to their nontoxic, low-cost, and safe properties. However, issues with zinc anodes, such as dendrite growth and parasitic hydrogen evolution reactions (HERs), must be addressed to commercialize them. Solutions, such as quasi-solid-state electrolytes made from synthetic polymer hydrogels, have been proposed to improve battery flexibility and energy density. However, most polymers used are nonbiodegradable, posing a challenge to sustainability. In this study, hydrogels made from biodegradable poly(vinyl alcohol) and protein nanofibrils from pea protein, a renewable plant-based source, are used as an electrolyte in aqueous zinc-ion batteries. Results show that the flexible and biodegradable hydrogel can enhance the zinc anode stability and effectively restrict HER. This phenomenon is because of the hydrogen-bond network between nanofibril functional groups and water molecules. In addition, the interaction between functional groups on nanofibrils and Zn2+ constructs ion channels for the even migration of Zn2+, avoiding dendrite growth. The Zn||Zn symmetric cell using the hydrogel electrolyte exhibits a long lifespan of over 3000 h and improved capacity retention in the Zn||AC-I2 hybrid ion batteries by suppressing cathode material dissolution. This study suggests the potential of biodegradable hydrogels as a sustainable and effective solution for biodegradable soft powering sources

    Dipeniroqueforins A–B and Peniroqueforin D: Eremophilane-Type Sesquiterpenoid Derivatives with Cytotoxic Activity from <i>Penicillium roqueforti</i>

    No full text
    Guided by the Global Natural Products Social (GNPS) molecular networking strategy, five undescribed eremophilane-type sesquiterpenoid derivatives (1–5) were isolated and identified from fungus Penicillium roqueforti, which was separated from the root soil of plant Hypericum beanii collected in Shennongjia Forestry District, Hubei Province. Dipeniroqueforins A–B (1–2), representing a lactam-type sesquiterpenoid skeleton with a highly symmetrical and homodimeric 5/6/6–6/6/5 hexacyclic system, are reported within the eremophilane-type family for the first time. Peniroqueforin D (5) represents the first example of a 1,2-seco eremophilane-type sesquiterpenoid derivative featuring an undescribed 7/6-fused ring system. The structures of these compounds were elucidated by various spectroscopic analyses, DP4+ probability analyses, ECD calculations, and single-crystal X-ray diffraction experiments. Furthermore, these isolates were evaluated for cytotoxicity, and the result uncovered that compound 1 displayed broad-spectrum activity. Further mechanistic study revealed that compound 1 could significantly upregulate the mRNA expression of genes related to the oxidative induction, leading to the abnormal ROS levels in tumor cells and ultimately causing tumor cell apoptosis
    corecore