25 research outputs found

    Critical physical parameters for optimum recombinant protein production in yeast systems

    Get PDF
    Yeasts become the most preferred expression system for the production of recombinant proteins which play an important role in the development of biopharmaceutical products, antibodies for disease treatment, and enzymes for the food industries. The ability to grow in simple media, and ease of genetic manipulation with the benefits of typical eukaryotic expression which include protein processing, folding, and posttranslational modifications, have pushed them as one of the emerging hosts for recombinant protein production. Furthermore, yeasts are additionally quicker, easy to use, and cost-effective with high yield production in comparison to higher expression hosts. The effective productivity of the recombinant proteins is also influenced by the external parameters. This paper reviews different optimization methods of the recombinant protein production for several factors such as pH, temperature, media, agitation rate, inducer, inoculum size and induction time using one factor at a time (OFAT), Response Surface Methodology (RSM) and Artificial Neural Network (ANN). This review highlights the current studies regarding the optimization of the recombinant proteins expressed in three different yeasts namely; Saccharomyces cerevisiae, Komagataella phaffii, and Yarrowia lipolytica. These are the critical parameters which can be used to optimize the recombinant protein in yeast systems. The purification methods used to purify the proteins are also discussed for each system

    A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry

    Get PDF
    Lactic acid bacteria (LAB) are beneficial microbes known for their health-promoting properties. LAB are well known for their ability to produce substantial amounts of bioactive compounds during fermentation. Peptides, exopolysaccharides (EPS), bacteriocins, some amylase, protease, lipase enzymes, and lactic acid are the most important bioactive compounds generated by LAB activity during fermentation. Additionally, the product produced by LAB is dependent on the type of fermentation used. LAB derived from the genera Lactobacillus and Enterococcus are the most popular probiotics at present. Consuming fermented foods has been previously connected to a number of health-promoting benefits such as antibacterial activity and immune system modulation. Furthermore, functional food implementations lead to the application of LAB in therapeutic nutrition such as prebiotic, immunomodulatory, antioxidant, anti-tumor, blood glucose lowering actions. Understanding the characteristics of LAB in diverse sources and its potential as a functional food is crucial for therapeutic applications. This review presents an overview of functional food knowledge regarding interactions between LAB isolated from dairy products (dairy LAB) and fermented foods, as well as the prospect of functioning LAB in human health. Finally, the health advantages of LAB bioactive compounds are emphasized

    Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples

    Get PDF
    Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium

    Haematococcus pluvialis as a potential source of Astaxanthin with diverse applications in industrial sectors: current research and future directions

    Get PDF
    Haematococcus pluvialis, a green microalga, appears to be a rich source of valuable bioactive compounds, such as astaxanthin, carotenoids, proteins, lutein, and fatty acids (FAs). Astaxanthin has a variety of health benefits and is used in the nutraceutical and pharmaceutical industries. Astaxanthin, for example, preserves the redox state and functional integrity of mitochondria and shows advantages despite a low dietary intake. Because of its antioxidant capacity, astaxanthin has recently piqued the interest of researchers due to its potential pharmacological effects, which include anti-diabetic, anti-inflammatory, and antioxidant activities, as well as neuro-, cardiovascular-, ocular, and skin-protective properties. Astaxanthin is a popular nutritional ingredient and a significant component in animal and aquaculture feed. Extensive studies over the last two decades have established the mechanism by which persistent oxidative stress leads to chronic inflammation, which then mediates the majority of serious diseases. This mini-review provides an overview of contemporary research that makes use of the astaxanthin pigment. This mini-review provides insight into the potential of H. pluvialis as a potent antioxidant in the industry, as well as the broad range of applications for astaxanthin molecules as a potent antioxidant in the industrial sector

    Improved cultivation of gdhA derivative Pasteurella multocida B: 2 for high density of viable cells through in situ ammonium removal using cation-exchange resin for use as animal vaccine

    Get PDF
    Pasteurella multocida serotype B:2 is the causative agent of hemorrhagic septicemia, a fatal disease of cattle and buffaloes. A live attenuated vaccine, gdhA derivative P. multocida B:2 mutant, was created to defeat the disease. During the cultivation of P. multocida B:2 mutant, substantial amount of ammonium was accumulated in the culture, which greatly inhibited the growth of this bacterium. The feasibility of using integrated cultivation with in situ removal of ammonium by cation-exchange resin for the improvement of growth and viability of P. multocida cells was investigated. The ability of various cation-exchange resins, which include Amberlite IRC86, Amberlite IR120 H, and Dowex DRG8 H, to selectively adsorbed ammonium was first investigated using sorption isotherm experiments. Amberlite IRC86 has the highest ability for ammonium adsorption. The incorporation of 10 g/L of Amberlite IRC86 resin into the shake flask culture (100 mL) of P. multocida B:2 mutant, improved the final viable cell concentration (7.2 × 1010 cfu/mL) by about 13-fold compared to that obtained in cultivation without resin (5.5 × 109 cfu/mL). In cultivation with Amberlite IRC86 resin, approximately 41% of the ammonium accumulated in the culture was removed

    Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction

    Get PDF
    Haematococcus lacustris (formerly called Haematococcus pluvialis) is regarded as the most promising microalgae for the production of natural astaxanthin, which is secondary metabolism used as a dietary supplement, also for cosmetic applications, due to its high antioxidant activity. Astaxanthin has a wide range of biological activities and high economic potential, and currently dominates the market in its synthetic form. Furthermore, because of the difficulty of bioprocess and the high cost of cultivation, astaxanthin extracted from this microalga is still expensive due to its low biomass and pigment productivities. Large-scale biomass production in biotechnological production necessitates the processing of a large number of cultures as well as the use of both indoor and outdoor systems, such as open pond raceway systems and photo-bioreactors (PBR). The photo-bioreactors systems are suitable for mass production because growth conditions can be controlled, and the risk of contamination can be reduced to a certain extent and under specific culture parameters. This review discusses current technologies being developed to improve cultivation and operation efficiency and profitability, as well as the effect of parameter factors associated with H. lacustris cultivation on biomass and astaxanthin bioproduction, and even strategies for increasing bioproduction and market potential for H. lacustris astaxanthin

    Extraction and characterization of bioactive fish by-product collagen as promising for potential wound healing agent in pharmaceutical applications: Current trend and future perspective

    Get PDF
    Collagen is a structural protein naturally found in mammals. Vertebrates and other connective tissues comprise about 30% of an animal’s overall protein. Collagen is used in a variety of applications including cosmetics, biomedical, biomaterials, food, and pharmaceuticals. The use of marine-based collagen as a substitute source is rapidly increasing due to its unique properties, which include the absence of religious restrictions, a low molecular weight, no risk of disease transmission, biocompatibility, and ease of absorption by the body system. This review discusses recent research on collagen extraction from marine-based raw material, specifically fish by-products. Furthermore, pretreatment on various sources of fish materials, followed by extraction methods, was described. The extraction procedures for acid soluble collagen (ASC) and pepsin soluble collagen (PSC) for fish collagen isolation are specifically discussed and compared. As a result, the efficacy of collagen yield was also demonstrated. The recent trend of extracting fish collagen from marine biomaterials has been summarized, with the potential to be exploited as a wound healing agent in pharmaceutical applications. Furthermore, background information on collagen and characterization techniques primarily related to the composition, properties, and structure of fish collagen are discussed

    Integrated Stirred-Tank Bioreactor with Internal Adsorption for the Removal of Ammonium to Enhance the Cultivation Performance of gdhA Derivative Pasteurella multocida B:2

    Get PDF
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2

    Pasteurellosis vaccine commercialization: Physiochemical factors for optimum production

    Get PDF
    Pasteurella spp. are Gram-negative facultative bacteria that cause severe economic and animal losses. Pasteurella-based vaccines are the most promising solution for controlling Pasteurella spp. outbreaks. Remarkably, insufficient biomass cultivation (low cell viability and productivity) and lack of knowledge about the cultivation process have impacted the bulk production of animal vaccines. Bioprocess optimization in the shake flask and bioreactor is required to improve process efficiency while lowering production costs. However, its state of the art is limited in providing insights on its biomass upscaling, preventing a cost-effective vaccine with mass-produced bacteria from being developed. In general, in the optimum cultivation of Pasteurella spp., production factors such as pH (6.0–8.2), agitation speed (90–500 rpm), and temperature (35–40 °C) are used to improve production yield. Hence, this review discusses the production strategy of Pasteurella and Mannheimia species that can potentially be used in the vaccines for controlling pasteurellosis. The physicochemical factors related to operational parameter process conditions from a bioprocess engineering perspective that maximize yields with minimized production cost are also covered, with the expectation of facilitating the commercialization process

    Improved stability of live attenuated vaccine gdhA derivative Pasteurella multocidaB:2 by freeze drying method for use as animal vaccine

    Get PDF
    The efficacy of attenuated strain of gdhA derivative Pasteurella multocidaB:2 mutant as a live vaccine to control haemorrhagic septicaemia (HS) disease in cattle and buffaloes has been demonstrated. In order to use P. multocida B:2 mutant as a commercial product, it is essential to optimise its formulation for high viability and stability of the live cells. The effectiveness of freeze-drying process using different protective agentformulations for improving cells viability was explored. Sugar and nitrogen compounds were used as protective agents in freeze-drying and the capability of these compounds in maintaining the viability of mutant P. multocida B:2 during subsequent storage was investigated. A complete loss in viability of freeze-dried mutant P. multocida B:2 was monthly observed until 6–12 months of storage at −30 °C, 4 °C and 27 °C when nitrogen compound or no protective agent was added. Trehalose and sucrose showed significantly high survival rate of 93–95% immediately after freeze-drying and the viability was retained during the subsequent storage at −30 °C and 4 °C. A smooth cell surface without any cell-wall damage was observed for the cells formulated with trehalose under scanning electron micrograph. This study presented a freeze-drying process generating a dried live attenuated vaccine formulation with high stability for commercial applications
    corecore