39 research outputs found

    Mechanical, thermal and morphological studies of epoxidized palm oil / unsaturated polyester / montmorillonite composites

    Get PDF
    Nanocomposite consisting of natural fibre reinforced thermoset/vegetable oil/montmorillonite (MMT) nanofiller resin is among the latest technologies in nanocomposites production. It has contributed to better environment and increase the sustainability of the composite materials. To tap the abundance of palm oil in Malaysia, this study was conducted to produce a novel composite of kenaf fibre reinforced unsaturated polyester (UPE)/epoxidized palm oil (EPO)/MMT by resin transfer moulding (RTM) followed by oven curing. Benzoyl peroxide was used as an initiator and the composition was kept constant at 1.5 phr. The compositions of UPE/EPO resin were varied at 90/10, 80/20, 70/30 wt % and the MMT nanoclay were varied at 1, 1.5 and 2 phr for each formulation. The effects of different loading ratios of EPO and MMT in UPE/EPO/MMT and the different RTM mould angles in kenaf fibre reinforced UPE/EPO/MMT composite were studied in particular mechanical, morphology, thermal, and water absorption properties of the resin and composite. Pre-characterisations of UPE/EPO resin were carried out using Fourier transform infrared spectroscopy and differential scanning calorimetry. The results revealed that the oxirane rings of EPO were successfully opened and the resin successfully crosslinked at applied curing temperature. The addition of EPO has caused a decrease in glass transition temperature, tensile, flexural properties and an increase in elongation at break and impact strength, which indicated an increase in mobility and toughness of UPE chain. UPE/EPO blends also exhibited higher thermal stability than neat UPE. The addition of MMT nanoclay enhanced the mechanical and thermal properties of the resin. The optimum balance properties were obtained for UPE at 10 wt % EPO and 1.5 phr MMT nanoclay loadings. The best formulation was then carried out at 0º, 30º and 45º RTM mould angle with kenaf fibre reinforcement. 30º RTM mould angle gave the highest mechanical and thermal properties of the resulted kenaf fibre reinforced UPE/EPO/MMT composite

    Perbincangan Kerjasama bersama PolyGreen Chemicals Sdn Bhd

    Get PDF
    Lawatan dan perbincangan kerjasama telah dijalankan di PolyGreen Chemicals Sdn Bhd di Klang, Selangor pada 28 Julai 2022. Lawatan diketuai oleh pensyarah kanan, Ts Dr Siti Noor Hidayah Mustapha dan disertai bersama Ts Dr Muhammad Hafiz Mazwir

    High durabilty bio-polyester resin using graphene and palm oil derivatives for composite appications

    Get PDF
    Research and development of eco-friendly products such as bio-based unsaturated polyester resin helps differentiate product offerings. Graphene‐enhanced fiber‐reinforced biopolymer (gFRP) composites is a new approach in improving the biopolymer properties and applications. Since Malaysia is abundantly available palm oil and natural resources, new approach by blending palm oil and graphene reinforcement is a promising approach to replace the current synthetic product in market

    Interactions and performance analysis of epoxidized palm oil/unsaturated polyester resin: Mechanical, thermal, and thermo-mechanical properties

    Get PDF
    In this work, an alternative of bio-thermoset resin for composite applications was synthesized using unsaturated polyester resin (UPE) and epoxidized palm oil (EPO). The main purpose of this study is to reduce the dependency on petroleum and improve the toughness properties of UPE by partially introduced renewable source triglyceride, EPO in the UPE chain. The UPE resin blends with 10, 20, and 30 wt% EPO oil were synthesized by using benzoyl peroxide as an initiator. The samples were cured in an oven at 100°C and 160°C for 4 h. The interaction of the blend was studied by the FTIR test supported by the SEM test. The effects of EPO loadings in UPE on the mechanical, thermal, and thermo-mechanical properties were also being studied. The addition of EPO physically interacted in the system and acted as a lubricant. The higher the addition of EPO in UPE has increased the elongation at break and impact strength of the UPE resin, which indicated an increase in mobility and toughness of the UPE chain. The developed UPE/EPO blends resin also exhibited higher thermal stability than the neat UPE, thereby showing potential to be used in a wide range of composite applications

    Effect of hybridization composition and glycerin content on novel corn starch/nata de coco plastic film: Thermal, mechanical, and degradation study

    Get PDF
    The objective of this work was to develop a plastic film from food sources with excellent thermal, mechanical, and degradability performance. Corn starch (CS)/nata de coco (NDC) were hybridized with addition of glycerin as plasticizer at different weight ratio and weight percent, respectively. Sample analysis found that the hybridization of CS with NDC improved the film forming properties, mechanical and thermal, degradation properties, as well as hydrophobicity and solubility of the film up to 0.5:0.5 wt hybrid ratio. The properties of the films were highly affected by the homogeneity of the sample during hybridization, with high NDC amount (0.3:0.7 wt CS:NDC) showing poor hydrophobicity, and mechanical and thermal properties. The glycerin content, however, did not significantly affect the hydrophobicity, water solubility, and degradability properties of CS/NDC film. Hybridization of 0.5:0.5 wt CS/NDC with 2 phr glycerin provided the optimum Young’s modulus (15.67 MPa) and tensile strength (1.67 MPa) properties

    Mechanical properties of unsaturated polyester/epoxidized palm oil/Kenaf fibre composite at different styrene content

    Get PDF
    Polyester resin (UPE) is petroleum-based polymer that most generally utilized as matrix system in fibre-reinforced plastic (FRP) products due to its high properties per price ratio. Currently, researchers are interested in partial blends of UPE resin with vegetable oil reinforced with natural fibre to produce renewable and sustainable composite products. However, the mechanical properties of this new blending bio-composite are highly related to the curing and crosslinking process of the UPE resin; which contributed by the styrene concentration as the crosslinking agent. Thus, this research aims to investigate the effect of styrene contents on the mechanical and thermal properties of unsaturated polyester (UPE)/epoxidized palm oil (EPO)/kenaf composites. The kenaf fibres were initially treated with an alkaline solution, and the composites were prepared by the direct mixing method and fabricated by hand lay-up technique. In this research, the amount of EPO and styrene varied at 0, 10, 20, 30 wt% and 25, 35, and 45 %, respectively. The characterization of found that increasing styrene content in UPE/EPO/kenaf composites improved the crosslinking and chemical interactions in the composites. In addition, increasing styrene content also improved the tensile modulus, tensile strength, Izod impact strength and elongation at break of the UPE/EPO/kenaf composites

    Enhanced hydrophobic performance of UV-curable palm oil polyurethane by fluoroacrylate monomer

    Get PDF
    Driven by the versatility of crosslinked complex network formed by the reaction of double bonds during photopolymerization, ultraviolet (UV) curable palm oil polyurethane (POPU) was modified by the addition of fluoroacrylate monomer to increase its hydrophobicity properties. Fourier transform infrared spectroscopy showed a successful attachment of the fluoro group to POPU. Fluoroacrylate palm oil polyurethane (FPOPU) also showed good hydrophobic properties as FPOPU-6% has the highest contact angle which is 108.22°. In the sliding angle test, FPOPU-2% provided the highest roll-off properties with the lowest angle of incline which was 16.6°. The addition of fluoroacrylate at 6% also lowered the water absorption properties of POPU from 4.94% to 3.98%. To further investigate the cause of hydrophobicity increase, scanning electron microscopy and atomic force microscopy analysis were conducted. The morphology showed fluorine component migration increased the roughness of the coating by the coating’s hydrophobicity performance. Overall, fluoroacrylate monomer addition successfully improved the hydrophobic properties of POPU

    Characterization of fluoroacrylate palm oil polyurethane (FPOPU) with different synthesis methods using fourier-transform infra-red (FTIR)

    Get PDF
    In this study, fluoroacrylate palm oil polyurethane (FPOPU) was synthesized with different synthesis methods. FPOPU was synthesized stepwise starting with the synthesis of acrylated epoxidized palm oil (AEPO) by a reaction of acrylic acid (AA) and triethylamine (TEA) as the catalyst. Then, palm oil polyurethane (POPU) was formed by the reaction of AEPO with isophorone diisocyanate (IPDI) and hydroxyethyl acrylate (HEA) as an end cap agent. POPU was further added with 1,6 hexanediol diacrylate (HDDA), trimethyloltripropane triacrylate (TMPTA), and heptafluorodecyl methyl-metacrylate (HDFDMA) monomers to form FPOPU. FPOPU synthesis methods were studied by manipulating the sequence of chemicals added, temperature, and mixing time of POPU. The FPOPU mixture was finally cast onto a silicone mold with 1 mm thickness and cured under UV radiation at 120 seconds. Based on the analysis, pre-mixed IPDI with HEA at 60°C for 15 min followed by the addition of AEPO at 60°C and further mixed for 3 hours (Method 2) shows the complete formation of the urethane chain. It is proven by the existence of NH peak at 3500 cm-1 and the disappearance of NCO peak at the range of 2200-2500 cm-1 indicating the NCO functional group has completely reacted with OH group in AEPO. The addition of fluorination also can be proved by the existence of CF stretching at 1012 cm-1. This study provides information regarding comparison between the synthesis method of FPOPU

    Water absorption behaviour of epoxy/acrylated epoxidized palm oil (AEPO) reinforced hybrid kenaf/glass fiber montmorillonite (HMT) composites

    Get PDF
    The use of fiber-reinforced vegetable oil - polymer composites has increased in various technical fields. However, the long-term operating performance of these materials is still not well understood, limiting the development of these composites. In this study, the water absorption performance of hybrid composites, which consist of kenaf fiber and glass fiber as reinforcement, epoxy resin and acrylated epoxidized palm oil (AEPO) as a matrix, and montmorillonite (MMT) nano clays as a filler was evaluated with the function of different fibers layering order. The hand lay-up method is used to produce the composites with the variable number of kenaf fibers and glass fibers layer sequences. The water absorption kinetics of epoxy/AEPO reinforced hybrid kenaf/glass fiber-filled MMT composites are described in this paper. It has been observed that the water absorption rate of the composites depends on the fiber layering sequences. The alternative sequence of Glass-Kenaf-Kenaf-Glass and Kenaf-Glass-Kenaf-Glass composites layers exhibited the lowest moisture absorption rates of 7.61% and 7.63%, respectively

    Structural and thermal behavior of lignin-based formaldehyde-free phenolic resin

    Get PDF
    Phenolic resin has been widely used in various field applications and is a crucial resin in daily life. However, the raw materials used for producing phenolic resin are quite costly and harmful to the consumer. Therefore, the production of bio-based phenolic resins has attracted considerable scientific and industrial interest. The utilization of bio-based substituents for phenol and formaldehyde as phenolic resin raw materials is described in this paper. The structural properties of the prepared bio-based phenolic resin are established by FTIR and NMR, and the thermal stability is determined by DSC and TGA. The presence of the methylene bridge functional group at around 1460 cm1 confirms the formation of phenolic resins. The resins have a decomposition temperature of about 300 °C and exhibit good thermal stability. This confirmed structure and thermally stable resins could be used to substitute the current commercialized phenolic resins
    corecore