61 research outputs found

    Clinical improvements in temporospatial gait variables after a spinal tap test in individuals with idiopathic normal pressure hydrocephalus

    Get PDF
    Background: Idiopathic Normal Pressure Hydrocephalus (iNPH) is a neurological condition that often presents gait disturbance in the early stages of the disease and affects other motor activities. This study investigated changes in temporospatial gait variables after cerebrospinal fluid (CSF) removal using a tap test in individuals with idiopathic normal pressure hydrocephalus (iNPH), and explored if the tap test responders and non-responders could be clinically identified from temporospatial gait variables. Methods: Sixty-two individuals with iNPH were recruited from an outpatient clinic, eleven were excluded, leaving a total of 51 who were included in the analysis. Temporospatial gait variables at self-selected speed were recorded at pre- and 24-hour post-tap tests which were compared using Paired t-tests, Cohen’s d effect size, and percentage change. A previously defined minimal clinical important change (MCIC) for gait speed was used to determine the changes and to classify tap test responders and non-responders. A mixed model ANOVA was used to determine the within-group, between-group, and interaction effects. Results: Comparisons of the data between pre- and post-tap tests showed significant improvements with small to medium effect sizes for left step length, right step time, stride length and time, cadence, and gait speed. Gait speed showed the largest percentage change among temporospatial gait variables. Within-group and interaction effects were found in some variables but no between-group effect was found. Tap test responders showed significant improvements in right step length and time, stride length and time, cadence, and gait speed while non-responders did not. Conclusions: Some individuals with iNPH showed clinically important improvements in temporospatial gait variables after the tap test, particularly in step/stride length and time, cadence, who could be classified by gait speed. However, gait-related balance variables did not change. Therefore, additional treatments should focus on improving such variables

    Oligosarcomas, IDH‑mutant are distinct and aggressive

    Get PDF
    Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile

    Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer Therapy

    No full text
    Selenium nanoparticles (SeNPs) were synthesized to overcome the limitations of selenium, such as its narrow safe range and low water solubility. SeNPs reduce the toxicity and improve the bioavailability of selenium. Chitosan-coated SeNPs (Cs-SeNPs) were developed to further stabilize SeNPs and to test their effects against glioma cells. The effects of Cs-SeNPs on cell growth were evaluated in monolayer and 3D-tumor spheroid culture. Cell migration and cell invasion were determined using a trans-well assay. The effect of Cs-SeNPs on chemotherapeutic drug 5-fluorouracil (5-FU) sensitivity of glioma cells was determined in tumor spheroids. An in vitro blood–brain barrier (BBB) model was established to test the permeability of Cs-SeNPs. SeNPs and Cs-SeNPs can reduce the cell viability of glioma cells in a dose-dependent manner. Compared with SeNPs, Cs-SeNPs more strongly inhibited 3D-tumor spheroid growth. Cs-SeNPs exhibited stronger effects in inhibiting cell migration and cell invasion than SeNPs. Improved 5-FU sensitivity was observed in Cs-SeNP-treated cells. Cellular uptake in glioma cells indicated a higher uptake rate of coumarin-6-labeled Cs-SeNPs than SeNPs. The capability of coumarin-6 associated Cs-SeNPs to pass through the BBB was confirmed. Taken together, Cs-SeNPs provide exceptional performance and are a potential alternative therapeutic strategy for future glioma treatment

    Phase II study of Cloretazine for the treatment of adults with recurrent glioblastoma multiforme

    No full text
    Cloretazine (VNP40101M) is a newly synthesized alkylating agent belonging to a novel class of alkylating agents called 1,2-bis(sulfonyl)hydrazines. Agents that belong to this class do not produce vinylating and chloroethylating species, and hence this class of alkylating agents is thought to have minimal systemic toxicity. Cloretazine produces two short-lived active species: 1,2-bis(methylsulfonyl)-1-(2-chloroethyl) hydrazine (a chloroethylating species) and a thiophilic carbamoylating methylisocyanate species. The chloroethylating species preferentially produces lesions at the O(6) position of guanine. The methylisocyanate species may inhibit O(6)-alkylguanine-DNA alkyltransferase, an important mechanism of resistance against alkylating agents. The purpose of this study was to determine the efficacy and tolerability of Cloretazine in patients with recurrent glioblastoma multiforme. The basis for the determination of efficacy was the proportion of patients alive without evidence of disease progression six months after initiation of treatment. Patients with recurrent glioblastoma multiforme received Cloretazine (300 mg/m(2)) intravenously every six weeks. Radiographic response, survival data, and toxicity were assessed. Thirty-two patients were enrolled. Median age was 56 years; 24 patients (75%) were men. At six months, two patients were alive and progression free, so the six-month progression-free survival (PFS) was 6%. The median PFS was 6.3 weeks. There were no objective radiographic responses. Twelve patients had stable disease for at least one cycle, but only two patients received more than three cycles. Nine patients experienced grade 4 thrombocytopenia and three patients experienced grade 4 neutropenia. Cloretazine administered every six weeks was relatively well tolerated, although this schedule has insignificant activity for patients with recurrent glioblastoma multiform
    corecore