29 research outputs found
Recommended from our members
Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells.
UNLABELLED: CD8(+) T cells specific for pp65, IE1, and IE2 are present at high frequencies in human cytomegalovirus (HCMV)-seropositive individuals, and these have been shown to have phenotypes associated with terminal differentiation, as well as both cytokine and proliferative dysfunctions, especially in the elderly. However, more recently, T cell responses to many other HCMV proteins have been described, but little is known about their phenotypes and functions. Consequently, in this study, we chose to determine the diversity of HCMV-specific CD8(+) T cell responses to the products of 11 HCMV open reading frames (ORFs) in a cohort of donors aged 20 to 80 years old as well as the ability of the T cells to secrete gamma interferon (IFN-γ). Finally, we also tested their functional antiviral capacity using a novel viral dissemination assay. We identified substantial CD8(+) T cell responses by IFN-γ enzyme-linked immunospot (ELISPOT) assays to all 11 of these HCMV proteins, and across the cohort, individuals displayed a range of responses, from tightly focused to highly diverse, which were stable over time. CD8(+) T cell responses to the HCMV ORFs were highly differentiated and predominantly CD45RA(+), CD57(+), and CD28(-), across the cohort. These highly differentiated cells had the ability to inhibit viral spread even following direct ex vivo isolation. Taken together, our data argue that HCMV-specific CD8(+) T cells have effective antiviral activity irrespective of the viral protein recognized across the whole cohort and despite viral immune evasion. IMPORTANCE: Human cytomegalovirus (HCMV) is normally carried without clinical symptoms and is widely prevalent in the population; however, it often causes severe clinical disease in individuals with compromised immune responses. HCMV is never cleared after primary infection but persists in the host for life. In HCMV carriers, the immune response to HCMV includes large numbers of virus-specific immune cells, and the virus has evolved many mechanisms to evade the immune response. While this immune response seems to protect healthy people from subsequent disease, the virus is never eliminated. It has been suggested that this continuous surveillance by the immune system may have deleterious effects in later life. The study presented in this paper examined immune responses from a cohort of donors and shows that these immune cells are effective at controlling the virus and can overcome the virus' lytic cycle immune evasion mechanisms.This work was funded by British Medical Research Council Grant G0701279 and supported by the NIHR Cambridge BRC Cell Phenotyping hub.This is the accepted manuscript version. The final published version is available from ASM at http://jvi.asm.org/content/early/2014/07/03/JVI.01477-14.abstract
Cytomegalovirus, Epstein–Barr virus and risk of breast cancer before age 40 years: a case–control study
We investigated whether there is an association between cytomegalovirus (CMV) and Epstein-Barr virus (EBV) IgG levels and risk of breast cancer before age 40 years. CMV and EBV IgG levels were measured in stored plasma from 208 women with breast cancer and 169 controls who participated in the Australian Breast Cancer Family Study (ABCFS), a population-based case-control study. CMV and EBV IgG values were measured in units of optical density (OD). Cases and controls did not differ in seropositivity for CMV (59 and 57% respectively; P=0.8) or EBV (97 and 96% respectively; P=0.7). In seropositive women, mean IgG values were higher in cases than controls for CMV (1.20 vs 0.98 OD, P=0.005) but not for EBV (2.65 vs 2.57 OD, P=0.5). The adjusted odds ratios per OD unit were 1.46 (95% CI 1.06-2.03) for CMV IgG and 1.11 (0.93-1.33) for EBV IgG. The higher mean CMV IgG levels found in women with breast cancer could be the result of a more recent infection with CMV, and may mean that late exposure to CMV is a risk factor for breast cancer
FINE SPECIFICITY OF CELLULAR IMMUNE-RESPONSES IN HUMANS TO HUMAN CYTOMEGALOVIRUS IMMEDIATE-EARLY 1-PROTEIN
Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known about responses against this protein by CD4+ T cells, which may be important as direct effector cells or helper cells for antibody and CD8+ responses. Proliferative-T-cell responses to HCMV IE1 were studied in normal seropositive subjects. Peripheral blood mononuclear cells from 85% of seropositive subjects proliferated in response to HCMV from infected fibroblasts, and of these, 73% responded to recombinant baculovirus IE1. Responding cells were predominantly CD3+ CD4+. IE1 antigen preparations, including baculovirus recombinant protein, transfected rat cell nuclei, and synthetic peptides, induced IE1-specific T-cell lines which cross-reacted between the preparations. The fine specificity of these IE1-specific T-cell lines was studied by using overlapping synthetic peptides encompassing the entire sequence of the IE1 protein. The regions of the IE1 molecule recognized were identified and these varied between individuals, possibly reflecting differences in major histocompatibility complex (MHC) class II haplotype. In one subject, the peptide specificities of proliferative and MHC class I-restricted cytotoxic determinants on IE1 were spatially distinct. Thus, no single immunodominant T-cell determinant within HCMV IE1 was identified, suggesting that multiple peptides or a region of the 72-kDa IE1 protein would be required to induce specific T-cell responses in humans
FINE SPECIFICITY OF CELLULAR IMMUNE-RESPONSES IN HUMANS TO HUMAN CYTOMEGALOVIRUS IMMEDIATE-EARLY 1-PROTEIN
Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known about responses against this protein by CD4+ T cells, which may be important as direct effector cells or helper cells for antibody and CD8+ responses. Proliferative-T-cell responses to HCMV IE1 were studied in normal seropositive subjects. Peripheral blood mononuclear cells from 85% of seropositive subjects proliferated in response to HCMV from infected fibroblasts, and of these, 73% responded to recombinant baculovirus IE1. Responding cells were predominantly CD3+ CD4+. IE1 antigen preparations, including baculovirus recombinant protein, transfected rat cell nuclei, and synthetic peptides, induced IE1-specific T-cell lines which cross-reacted between the preparations. The fine specificity of these IE1-specific T-cell lines was studied by using overlapping synthetic peptides encompassing the entire sequence of the IE1 protein. The regions of the IE1 molecule recognized were identified and these varied between individuals, possibly reflecting differences in major histocompatibility complex (MHC) class II haplotype. In one subject, the peptide specificities of proliferative and MHC class I-restricted cytotoxic determinants on IE1 were spatially distinct. Thus, no single immunodominant T-cell determinant within HCMV IE1 was identified, suggesting that multiple peptides or a region of the 72-kDa IE1 protein would be required to induce specific T-cell responses in humans
Late diversification in the clonal composition of human cytomegalovirus-specific CD8(+) T cells following allogeneic hemopoietic stem cell transplantation
To investigate the mechanisms of human T-cell reconstitution following allogeneic hemopoietic stem cell transplantation (alloSCT), we analyzed the clonal composition of human cytomegalovirus (HCMV)specific or Epstein-Barr virus (EBV)specific CD8(+) T cells in 10 alloSC transplant recipients and their donors. All virus-specific CD8+ T-cell clones isolated from recipients after alloSCT contained DNA of donor origin. In all 6 D+/R+ sibling alloSCTs from seropositive donors into seropositive recipients, donor virus-specific clones transferred in the allograft underwent early expansion and were maintained long term in the recipient. In contrast, in 2 of 3 HCMV D+/R- alloSC transplant recipients in whom there was no detectable HCMV infection, donor HCMV-specific clones were undetectable, whereas donor EBV-specific clones were maintained in the same EBV-seropositive recipients, suggesting that transferred clones require antigen for their maintenance. Following D-/R+ transplantation from 3 seronegative donors into seropositive recipients, a delayed primary virus-specific CD8+ T-cell response was observed, in which the T cells contained donor DNA, suggesting that new antigen-specific T cells arose in the recipient from donor-derived progenitors. In 2 of 4 HCMV D+/R+ sibling allograft recipients the clonal composition underwent diversification as compared with their donors, with delayed persistent expansion of HCMV-specific clones that were undetectable in the donor or in the recipient during the early months after transplantation; this diversification may represent expansion of new clones generated from donor-derived progenitors. We conclude that, following alloSCT, late diversification of the HCMV-specific CD8+ T-cell clonal repertoire can occur in response to persistent viral antigen. (C) 2003 by The American Society of Hematology