4 research outputs found

    NATURAL IRON SEQUESTERING AGENTS: THEIR ROLES IN NATURE AND THERAPEUTIC POTENTIAL

    Get PDF
    Iron is one of the essential elements involved in many cellular processes that are necessary for life, including oxygen sensing, oxygen transport, electron transfer, energy metabolism, DNA synthesis etc. Although, iron is not readily available in the naturally available iron III form, microorganisms have evolved to produce smaller high affinity chelating small organic molecules called siderophores for its acquisition. The study of siderophores has opened up investigations of small-molecule inhibitors, which can hinder the biosynthesis of siderophores and thereby suppress the growth and virulence of bacteria in iron-limiting backgrounds. One of the most important applications of siderophores is selective drug delivery to defeat drug-resistant bacteria. It uses the iron transport capabilities of siderophores in carrying drugs/molecules into cells, synthetic through conjugates between siderophores and antimicrobial agents forming sideromycins. Some siderophore such as Desferrioxamine B have been found to be useful in the treatment of malaria caused by Plasmodiumfalciparum through intracellular iron depletion mechanisms. Importantly, iron overload diseases can be efficiently treated with siderophore based drugs as they can quench iron effectively. Moreover, siderophores such as dexrazoxane, desferriexochelins, isonicotinoyl hydrazine derivatives are being used in cancer therapy, as they prevent the formation of free radicals by reducing iron and retard the tumor growth by disturbing the iron regulation in tumor cells. In addition to bacterial siderophores, it is reported that plant-derived polyphenols, phenolic acids,and flavonoid compounds show siderophores like activity scavenging iron which gives rise to their antioxidant and anticancer activity.Â

    Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen.

    Get PDF
    While slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery. Urea is a rich source of nitrogen and therefore a commonly used fertilizer. We focus our work on the synthesis of environmentally benign nanoparticles carrying urea as the crop nutrient that can be released in a programmed manner for use as a nanofertilizer. In this study, the high solubility of urea molecules has been reduced by incorporating it into a matrix of hydroxyapatite nanoparticles. Hydroxyapatite nanoparticles have been selected due to their excellent biocompatibility while acting as a rich phosphorus source. In addition, the high surface area offered by nanoparticles allows binding of a large amount of urea molecules. The method reported here is simple and scalable, allowing the synthesis of a urea-modified hydroxyapatite nanohybrid as fertilizer having a ratio of urea to hydroxyapatite of 6:1 by weight. Specifically, a nanohybrid suspension was synthesized by in situ\textit{in situ} coating of hydroxyapatite with urea at the nanoscale. In addition to the stabilization imparted due to the high surface area to volume ratio of the nanoparticles, supplementary stabilization leading to high loading of urea was provided by flash drying the suspension to obtain a solid nanohybrid. This nanohybrid with a nitrogen weight of 40% provides a platform for its slow release. Its potential application in agriculture to maintain yield and reduce the amount of urea used is demonstrated.Authors thank Hayleys Agro Ltd., Sri Lanka for initiating this research programme at SLINTEC and Nagarjuna Fertilizer and Chemical Ltd (NFCL), India for providing further support. Authors acknowledge Mr Sunanda Gunesekara of SLINTEC for assistance with scaling up the production process to enable the field trials. ARK acknowledges the financial support received from ICTPELETTRA Users Program, Trieste, Italy to conduct photoemission experiments at Materials Science beam line (MSB) and ELETTRA SRS on HA and urea coated HA samples. ARK further acknowledges Dr. R.G. Acres of MSB beam line for his extensive support to conduct photoemission experiments. We acknowledge the Department of Agriculture and Rice Research and Development Institute of Sri Lanka, in particular Dr Priyantha Weerasinghe, Mr D Sirisena and Dr Amitha Benthota for the assistance in carrying out pot and farmers filed trials. NFCL and Central Salt & Marine Chemicals Research Institute, Gujarat, India for TEM and BET analysis

    Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen

    Get PDF
    While slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery. Urea is a rich source of nitrogen and therefore a commonly used fertilizer. We focus our work on the synthesis of environmentally benign nanoparticles carrying urea as the crop nutrient that can be released in a programmed manner for use as a nanofertilizer. In this study, the high solubility of urea molecules has been reduced by incorporating it into a matrix of hydroxyapatite nanoparticles. Hydroxyapatite nanoparticles have been selected due to their excellent biocompatibility while acting as a rich phosphorus source. In addition, the high surface area offered by nanoparticles allows binding of a large amount of urea molecules. The method reported here is simple and scalable, allowing the synthesis of a urea-modified hydroxyapatite nanohybrid as fertilizer having a ratio of urea to hydroxyapatite of 6:1 by weight. Specifically, a nanohybrid suspension was synthesized by in situ\textit{in situ} coating of hydroxyapatite with urea at the nanoscale. In addition to the stabilization imparted due to the high surface area to volume ratio of the nanoparticles, supplementary stabilization leading to high loading of urea was provided by flash drying the suspension to obtain a solid nanohybrid. This nanohybrid with a nitrogen weight of 40% provides a platform for its slow release. Its potential application in agriculture to maintain yield and reduce the amount of urea used is demonstrated.Authors thank Hayleys Agro Ltd., Sri Lanka for initiating this research programme at SLINTEC and Nagarjuna Fertilizer and Chemical Ltd (NFCL), India for providing further support. Authors acknowledge Mr Sunanda Gunesekara of SLINTEC for assistance with scaling up the production process to enable the field trials. ARK acknowledges the financial support received from ICTPELETTRA Users Program, Trieste, Italy to conduct photoemission experiments at Materials Science beam line (MSB) and ELETTRA SRS on HA and urea coated HA samples. ARK further acknowledges Dr. R.G. Acres of MSB beam line for his extensive support to conduct photoemission experiments. We acknowledge the Department of Agriculture and Rice Research and Development Institute of Sri Lanka, in particular Dr Priyantha Weerasinghe, Mr D Sirisena and Dr Amitha Benthota for the assistance in carrying out pot and farmers filed trials. NFCL and Central Salt & Marine Chemicals Research Institute, Gujarat, India for TEM and BET analysis

    Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: Efficacy and plant uptake

    Get PDF
    Macronutrient delivery to plants, particularly nitrogen, is problematic because of losses occurring during fertilization. Currently, nanotechnology is being considered as a solution to improving nutrient use efficiency. In this study, we report the synthesis and plant uptake of two plant nutrient nanocomposites based on urea coated hydroxyapatite (UHA) and potassium encapsulated into (i) a nanoclay, montmorillonite (MMT) or (ii) cavities present in Gliricidia sepium stem resulting in a wood chip containing macronutrients. Soil leaching behaviour, efficacy and plant uptake of the nutrients were tested in a pot experiment using Festuca arundinacea during a period of 60 weeks. Two nanocomposites displayed slow release behaviour particularly for nitrogen, in soil leaching tests compared to the conventional formulations. Both nanoformulations displayed efficient plant nutrient uptake highlighting the improved nutrient use efficiency. These data clearly revealed that urea fabricated into its nanoscale provide platform for development of efficient fertilizer formulations
    corecore