9 research outputs found

    MOLECULAR, HISTOLOGICAL, AND ANTI-OXIDANT EVALUATION OF COLITIS INDUCTION IN RATS BY DIFFERENT CONCENTRATION OF DEXTRAN SODIUM SULFATE (5 KDA)

    Get PDF
    Objective:  The current study was conceived and performed to assess the pathophysiological, histological, and molecular manipulations of dextran sodium sulphate (DSS; MW: 5,000 Da) intervention in the rat and determined the changes in the antioxidant capacity of host and representative antioxidant enzymes.Methods: Wistar rats were fed with two different concentrations (3 and 5%) of DSS for seven days and caged for another seven days. Then colon and serum samples were collected, and colitis induction was assessed by histochemical examination. The level of antioxidant enzymes were determined by spectroscopy methods, and gene regulations were evaluated by qPCR.Results: The body mass of rat was gradually reduced to DSS intervention compared to naive control. The statistically significant level of reduction in the colon length has been recorded in DSS-treated rats (3% DSS-treated: 14.33±0.53 cm; 5% DSS-treated: 13.73±0.53 cm) compared to control (Control: 17.41±0.54 cm). The total histological scores of different study groups suggested that DSS causes the significant level of damages in rat colon. The antioxidant capacity of the host was significantly reduced in terms of trolox equivalence. About three-fold higher the amount of malondialdehyde was recorded in 5% DSS-treated group compared to control. The content of antioxidant enzymes were drastically reduced (1.4-2.7 fold) upon DSS exposure than naïve control. The expression of selected inflammatory markers (IL-6, TNF-α, and iNOS) was up-regulated in DSS-exposed groups.Conclusion: The current study clearly indicated that DSS altered the expression of selected inflammatory genes, antioxidant capacity, and scavenging enzymes in such a way that it facilitates the development of colitis in Wistar rat and the study provides the necessary information the experimental designing to explore the ability of any active principle against colitis using DSS (5 KDa) induced colitis rat model.Â

    Nutrient Deprivation-Associated Changes in Green Microalga Coelastrum sp. TISTR 9501RE Enhanced Potent Antioxidant Carotenoids

    No full text
    The utilization of microalgae as a source of carotenoid productions has gained increasing popularity due to its advantages, such as a relatively fast turnaround time. In this study, a newly discovered Coelastrum sp. TISTR 9501RE was characterized and investigated for its taxonomical identity and carotenoid profile. To the best of our knowledge, this report was the first to fully investigate the carotenoid profiles in a microalga of the genus Coelastrum. Upon use of limited nutrients as a stress condition, the strain was able to produce astaxanthin, canthaxanthin, and lutein, as the major carotenoid components. Additionally, the carotenoid esters were found to be all astaxanthin derivatives, and β-carotene was not significantly present under this stress condition. Importantly, we also demonstrated that this practical stress condition could be combined with simple growing factors, such as ambient sunlight and temperature, to achieve even more focused carotenoid profiles, i.e., increased overall amounts of the aforementioned carotenoids with fewer minor components and chlorophylls. In addition, this green microalga was capable of tolerating a wide range of salinity. Therefore, this study paved the way for more investigations and developments on this fascinating strain, which will be reported in due course

    Comparison of molasses conversion to biomethanol by biohydrogen pathway with biogas route in engineering and cost assessment: Thailand case

    No full text
    Biomethanol is a significant chemical in biochemicals and biofuels. Molasses is interested in producing biogas and biohydrogen for biomethanol. Biohydrogen, Enterobacter aerogenes digested molasses obtaining value organic chemicals and biohydrogen in appropriate ratios of H2/CO2 then transforming to H2/CO by RWGS. Biogas was converted to syngas then methanol synthesis. The biogas pathway was 4 steps and it was appropriate for sailing single product as biomethanol. The biohydrogen pathway was 3 steps and obtained income both valuable substances and biomethanol. Operating expenditure for 1 kg methanol by biohydrogen experiment and theory were 4.4148 and 4.0912 USD comparing with biogas 0.3446 USD based on commercial methanol price 0.449 USD/kg. The sale prices per kg of biomethanol by biohydrogen were 6.7243 USD (Exp.) and 5.7500 USD (Theory) comparing with biomethanol sailing from biogas pathway at 0.4486 USD. Margin caps were 30.19%, 39.66%, and 40.55% for biogas pathway, biohydrogen experiment and theory route respectively

    Role of the Arabidopsis leucine aminopeptidase 2

    No full text
    Proteolysis-related genes have diverse functions across taxa and have long been considered as key players for intracellular protein turnover. Growing evidence indicates the biological significance of peptidases in degradation, maturation and modulation of bioactive peptides/proteins. By screening T-DNA tagged lines and functional analysis approaches we unraveled the Arabidopsis leucine aminopeptidase (AtLAP2) function in amino acid turnover. Transcriptomics and metabolomics profiling data suggested involvement of AtLAP2 in specific metabolic pathways. Loss-of-function of AtLAP2 resulted in early-leaf senescent and stress-sensitive phenotypes. Our work indicates an important in planta role for AtLAP2 contributing to a further understanding of the proteases having several implications in higher plants

    Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented Thai foods

    No full text
    L-glutaminase and glutamic acid decarboxylase (GAD) catalyzes the hydrolysis of L-glutamine and glutamate, respectively. L-glutaminase widely used in cancer therapy along with a combination of other enzymes and most importantly these enzymes were used in food industries, as a major catalyst of bioconversion. The current investigation was aimed to screen and select L-glutaminase, and GAD producing lactic acid bacteria (LAB). A total of 338 LAB were isolated from fermented meat, fermented fish, fermented soya bean, fermented vegetables and fruits. Among 338 isolates, 22 and 237 LAB has been found to be positive for L-glutaminase and GAD, respectively. We found that 30 days of incubation at 35 ºC and pH 6.0 was the optimum condition for glutaminase activity by G507/1. G254/2 was found to be the best for GAD activity with the optimum condition of pH 6.5, temperature 40 ºC and ten days of incubation. These LAB strains, G507/1 and G254/2, were identified as close relative of Lactobacillus brevis ATCC 14869 and Lactobacillus fermentum NBRC 3956, respectively by 16S rRNA sequencing. Further, improvements in up-stream of the fermentation process with these LAB strains are currently under development

    Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand

    No full text
    Rice, the seed of Oryza species, is the major cereal crop in most of the developing countries. Nearly 95% of global rice production is done in Asian countries, and about half of the world’s population consumes it. Some speciality rices are not commonly consumed. Colored rice is one of such variety. In these varieties, high amounts of anthocyanin pigment are deposited in the rice coat to form its black (also known as purple), brown and red colors. Minimum studies are there to explain the properties of these rice varieties of Thailand. Thus, the current study was aimed to assess the physicochemical and antioxidative properties of three rice varieties (Chiang Mai Black rice, Mali Red rice and Suphanburi-1 Brown rice) of different cultivars of northern Thailand. Rice bran extracts of these three cultivars were prepared with different solvents (polar and non-polar) for the evaluation of total phytochemical content and anti-oxidant free-radical-scavenging properties. Chiang Mai Black rice contained higher concentration of phenolic acid, flavonoids, and anthocyanins (Cyanidin 3-glucoside, peonidin 3-glucoside, cyanidin chloride). Chiang Mai Black rice is richer in free-radical-scavenging compounds and activities than the other tested varieties. Polar extractions of rice bran are high in anti-oxidative compounds and activities than non-polar extractions

    The influence of extraction methods on composition and antioxidant properties of rice bran oil

    No full text
    AbstractThe current study was employed to assess the influence of the different extraction methods on total tocols, γ-oryzanol content, and antioxidant properties of Chiang Mai Black rice, Mali Red rice, and Suphanburi-1 Brown rice bran oil. Rice bran oil (RBO) was extracted by Hexane, Hot pressed, Cold pressed, and Supercritical Fluid Extraction (SFe) methods. High yield of RBO was extracted by hexane and SFe methods. Total and subgroups of tocols, and γ-oryzanol content were determined by HPLC. The hexane extracted sample accounts for high content of γ-oryzanol and tocols. Besides, all of RBO extracts contain a significantly high amount of γ-tocotrienol. In vitro antioxidant assay results indicated that superior quality of oil was recovered by hexane extraction. The temperature in the extraction process also affects the value of the oil. Superior quality of oil was recovered by hexane extraction, in terms of phytochemical contents and antioxidant properties compared to other tested extraction methods. Further, thorough study of factors compromising the quality and quantity of RBO recovery is required for the development of enhanced functional foods and other related products
    corecore