14 research outputs found

    An Interactive Physical-Cognitive Game-Based Training System Using Kinect for Older Adults: Development and Usability Study

    No full text
    BackgroundDeclines in physical and cognitive functions are recognized as important risk factors for falls in older adults. Promising evidence suggests that interactive game-based systems that allow simultaneous physical and cognitive exercise are a potential approach to enhance exercise adherence and reduce fall risk in older adults. However, a limited number of studies have reported the development of a combined physical-cognitive game-based training system for fall risk reduction in older adults. ObjectiveThe aim of this study is to develop and evaluate the usability of an interactive physical-cognitive game-based training system (game-based exercise) for older adults. MethodsIn the development phase (Part I), a game-based exercise prototype was created by integrating knowledge and a literature review as well as brainstorming with experts on effective fall prevention exercise for older adults. The output was a game-based exercise prototype that covers crucial physical and cognitive components related to falls. In the usability testing (Part II), 5 games (ie, Fruits Hunter, Where Am I?, Whack a Mole, Sky Falls, and Crossing Poison River) with three difficulty levels (ie, beginner, intermediate, and advanced levels) were tested in 5 older adults (mean age 70.40 years, SD 5.41 years). After completing the games, participants rated their enjoyment level while engaging with the games using the Physical Activity Enjoyment Scale (PACES) and commented on the games. Descriptive statistics were used to describe the participants’ characteristics and PACES scores. ResultsThe results showed that the average PACES score was 123 out of 126 points overall and between 6.66 and 7.00 for each item, indicating a high level of enjoyment. Positive feedback, such as praise for the well-designed interactions and user-friendly interfaces, was also provided. ConclusionsThese findings suggest that it is promising to implement an interactive, physical-cognitive game-based exercise in older adults. The effectiveness of a game-based exercise program for fall risk reduction has yet to be determined

    Cognitive Benefits of Physical Exercise, Physical–Cognitive Training, and Technology-Based Intervention in Obese Individuals with and without Postmenopausal Condition: A Narrative Review

    No full text
    Obesity and estrogen deprivation have been identified as significant risk factors for cognitive impairment. Thus, postmenopausal conditions when paired with obesity may amplify the risks of developing dementia. Physical exercise has been recommended as a primary treatment for preventing obesity-related comorbidities and alleviating menopausal symptoms. This narrative review aimed to summarize the effects of exercise on cognition in obese individuals with and without menopausal condition, along with potential physiological mechanisms linking these interventions to cognitive improvement. Research evidence has demonstrated that exercise benefits not only physical but also cognitive and brain health. Among various types of exercise, recent studies have suggested that combined physical–cognitive exercise may exert larger gains in cognitive benefits than physical or cognitive exercise alone. Despite the scarcity of studies investigating the effects of physical and combined physical–cognitive exercise in obese individuals, especially those with menopausal condition, existing evidence has shown promising findings. Applying these exercises through technology-based interventions may be a viable approach to increase accessibility and adherence to the intervention. More evidence from randomized clinical trials with large samples and rigorous methodology is required. Further, investigations of biochemical and physiological outcomes along with behavioral changes will provide insight into underlying mechanisms linking these interventions to cognitive improvement

    Gait smoothness during high-demand motor walking tasks in older adults with mild cognitive impairment.

    No full text
    Early signs of Mild Cognitive Impairment (MCI)-related gait deficits may be detected through the performance of complex walking tasks that require high gait control. Gait smoothness is a robust metric of overall body stability during walking. This study aimed to explore gait smoothness during complex walking tasks in older adults with and without MCI. Participants were 18 older adults with MCI (mean age = 67.89 ± 4.64 years) and 18 cognitively intact controls (mean age = 67.72 ± 4.63 years). Gait assessment was conducted under four complex walking tasks: walking a narrow path, walking around an obstacle, horizontal head turns while walking, and vertical head turns while walking. The index of harmonicity (IH), representing gait smoothness associated with overall body stability, was measured in anteroposterior, mediolateral, and vertical directions. A multivariate analysis was employed to compare the differences in IH between groups for each complex walking task. The MCI group demonstrated a reduction of IH in the mediolateral direction during the horizontal head turns than the control group (MCI group = 0.64 ± 0.16, Control group = 0.74 ± 0.12, p = 0.04). No significant differences between groups were found for the IH in other directions or walking conditions. These preliminary findings indicate that older adults with MCI have a decline in step regularity in the mediolateral direction during walking with horizontal head turns. Assessment of the smoothness of walking during head turns may be a useful approach to identifying subtle gait alterations in older adults with MCI, which may facilitate timely gait intervention

    Feasibility of Internet-Based Physical-Cognitive Exercise for Health Benefits of Middle-Aged Obese Women

    No full text
    Introduction: Obesity in middle-aged women markedly increases the risk for non-communicable diseases, neurodegenerative diseases, and physical and cognitive problems. Exercise, particularly combined physical-cognitive exercise, has been demonstrated to have beneficial effects on both physical and cognitive health. However, middle-aged women often face barriers to engaging in exercise, which include time constraints, lack of motivation, and enjoyment. Incorporating an exercise program into a technology-based intervention in the home environment may help overcome these barriers and promote health benefits. Therefore, this study aimed to assess the feasibility of home-based, physical-cognitive internet-based exercise for middle-aged obese women. Methods: A total of 33 middle-aged obese women were enrolled in the study. Participants performed an intervention for 60 min/day, 3 days/week for 3 months. Feasibility outcomes (adherence, adverse events, physical performances, obesity parameters, and enjoyment of the program) were measured. Results: Average exercise adherence was 91.67%, and no adverse events were reported in this feasibility study. At the end of the training period, body weight and BMI were significantly decreased compared to baseline. As for physical performances, both cardiorespiratory fitness and lower limb muscle power were significantly improved at post-training when compared to baseline. Furthermore, the participants experienced a high level of exercise enjoyment, and it was maintained over the 3-month training period. Conclusion: These findings suggest that home-based, internet-based physical-cognitive exercise was safe and feasible for reducing obesity parameters, improving physical function, maintaining enjoyment over the course of training, and facilitating adherence to exercise in middle-aged obese women

    Conventional video-based system for measuring the subtask speed of the Timed Up and Go Test in older adults: Validity and reliability study.

    No full text
    The Timed Up and Go Test (TUG) is a simple fall risk screening test that covers basic functional movement; thus, quantifying the subtask movement ability may provide a clinical utility. The video-based system allows individual's movement characteristics assessment. This study aimed to investigate the concurrent validity and test-retest reliability of the video-based system for assessing the movement speed of TUG subtasks among older adults. Twenty older adults participated in the validity study, whilst ten older adults participated in the reliability study. Participant's movement speed in each subtask of the TUG under comfortable and fast speed conditions over two sessions was measured. Pearson correlation coefficient was used to identify the validity of the video-based system compared to the motion analysis system. Intraclass correlation coefficient (ICC3,2) was used to determine the reliability of the video-based system. The Bland-Altman plots were used to quantify the agreement between the two measurement systems and two repeatable sessions. The validity analysis demonstrated a moderate to very high relationship in all TUG subtask movement speeds between the two systems under the comfortable speed (r = 0.672-0.906, p < 0.05) and a moderate to high relationship under the fast speed (r = 0.681-0.876, p < 0.05). The reliability of the video-based system was good to excellent for all subtask movement speeds in both the comfortable speed (ICCs = 0.851-0.967, p < 0.05) and fast speed (ICCs = 0.720-0.979, p < 0.05). The Bland-Altman analyses showed that almost all mean differences of the subtask speed of the TUG were close to zero, within 95% limits of agreement, and symmetrical distribution of scatter plots. The video-based system was a valid and reliable tool that may be useful in measuring the subtask movement speed of TUG among healthy older adults

    Effects of combined dietary intervention and physical-cognitive exercise on cognitive function and cardiometabolic health of postmenopausal women with obesity: a randomized controlled trial

    No full text
    Abstract Background Postmenopausal women with obesity are markedly at risk of cognitive impairment and several health issues. Emerging evidence demonstrated that both diet and exercise, particularly physical-cognitive exercise are involved in cognitive and health benefits. However, the comparative effect of diet, exercise, and combined interventions in postmenopausal women with obesity on cognition and cardiometabolic health is still lacking. Identifying the effective health promotion program and understanding changes in cardiometabolic health linking these interventions to cognition would have important medical implications. This RCT aimed to examine the effect of single and combined interventions of diet and exercise on cognitive function and cardiometabolic health in postmenopausal women with obesity. Methods Ninety-two postmenopausal women with obesity were randomly assigned to diet group (intermittent fasting 2 days/week, 3 months), exercise group (physical-cognitive exercise 3 days/week, 3 months), combined group, or control group (n = 23/group). All cognitive outcomes and cardiometabolic outcomes were measured at baseline and post-3 months. Primary outcomes were executive functions, memory, and plasma BDNF levels. Secondary outcomes were global cognition, attention, language domain, plasma adiponectin levels, IL-6 levels, metabolic parameters, and physical function. Results At the end of the 3-month intervention, the exercise and combined group demonstrated significant memory improvement which was accompanied by significant improvements in plasma BDNF level, insulin levels, HOMA-IR, %body fat, and muscle strength when compared to controls (p  0.05). Significant reduction in cholesterol levels was shown in the diet and combined groups when compared to controls (p  0.05). However, all three intervention groups showed significant improvements in plasma BDNF levels, weight, BMI, WHR, fat mass, and predicted VO2 max, when compared to control (p < 0.05). Conclusion These findings suggest that combined physical-cognitive exercise and dietary intervention are promising interventions to improve cognition and obesity-related complications of postmenopausal women with obesity. Trial registration NCT04768725 ( https://clinicaltrials.gov ) 24th February 2021

    Gait assessment under complex motor walking tasks.

    No full text
    (A) Walking a narrow path, (B) Walking around an obstacle, (C) Walking straight while the horizontal head turns, and (D) Walking straight while the vertical head turns.</p
    corecore