230 research outputs found

    Coulomb Drag Between Parallel Ballistic Quantum Wires

    Full text link
    The Coulomb drag between parallel, {\it ballistic} quantum wires is studied theoretically in the presence of a perpendicular magnetic field B. The transresistance R_D shows peaks as a function of the Fermi level and splitting energy between the 1D subbands of the wires. The sharpest peaks appear when the Fermi level crosses the subband extrema so that the Fermi momenta are small. Two other kinds of peaks appear when either {\it intra}- or {\it inter}-subband transitions of electrons have maximum probability; the {\it intra}-subband transitions correspond to a small splitting energy. R_D depends on the field B in a nonmonotonic fashion: it decreases with B, as a result of the suppression of backscattering, and increases sharply when the Fermi level approaches the subband bottoms and the suppression is outbalanced by the increase of the Coulomb matrix elements and of the density of states.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figures. Phys. Rev. B,in pres

    Negative Electron-electron Drag Between Narrow Quantum Hall Channels

    Full text link
    Momentum transfer due to Coulomb interaction between two parallel, two-dimensional, narrow, and spatially separated layers, when a current I_{drive} is driven through one layer, is studied in the presence of a perpendicular magnetic field B. The current induced in the drag layer, I_{drag}, is evaluated self-consistently with I_{drive} as a parameter. I_{drag} can be positive or negative depending on the value of the filling factor \nu of the highest occupied bulk Landau level (LL). For a fully occupied LL, I_{drag} is negative, i.e., it flows opposite to I_{drive}, whereas it is positive for a half-filled LL. When the circuit is opened in the drag layer, a voltage \Delta V_{drag} develops in it; it is negative for a half-filled LL and positive for a fully occupied LL. This positive \Delta V_{drag}, expressing a negative Coulomb drag, results from energetically favored near-edge inter-LL transitions that occur when the highest occupied bulk LL and the LL just above it become degenerate.Comment: Text file in Latex/Revtex/preprint format, 7 separate PS figures, Physical Review B, in pres

    Acceptor binding energies in GaN and AlN

    Full text link
    We employ effective mass theory for degenerate hole-bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×\times 6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zincblende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ-GaN. The binding energies for ZB-GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding energy dependence upon the crystal field splitting in WZ-GaN is analyzed. Ionization levels in AlN are found to have similar `shallow' values to those in GaN, but with some important differences, which depend on the band structure parameterizations, especially the value of crystal field splitting used.Comment: REVTEX file - 1 figur

    Spin-Lattice Relaxation in Si Quantum Dots

    Full text link
    We consider spin-lattice relaxation processes for electrons trapped in lateral Si quantum dots in a [001][001] inversion layer. Such dots are characterized by strong confinement in the direction perpendicular to the surface and much weaker confinement in the lateral direction. The spin relaxation is assumed to be due to the modulation of electron gg-factor by the phonon-induced strain, as was shown previously for the shallow donors. The results clearly indicate that the specific valley structure of the ground electron state in Si quantum dots causes strong anisotropy for both the one-phonon and two-phonon spin relaxation rates. In addition, it gives rise to a partial suppression of the two-phonon relaxation in comparison to the spin relaxation of donor electrons.Comment: RevTex file, 3 PS figure

    Binding Energy of Charged Excitons in ZnSe-based Quantum Wells

    Full text link
    Excitons and charged excitons (trions) are investigated in ZnSe-based quantum well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of magneto-optical spectroscopy. Binding energies of negatively () and positively (X+) charged excitons are measured as functions of quantum well width, free carrier density and in external magnetic fields up to 47 T. The binding energy of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well width from 190 to 29 A. The binding energies of X+ are about 25% smaller than the binding energy in the same structures. The magnetic field behavior of and X+ binding energies differ qualitatively. With growing magnetic field strength, increases its binding energy by 35-150%, while for X+ it decreases by 25%. Zeeman spin splittings and oscillator strengths of excitons and trions are measured and discussed

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Antiferromagnet-ferromagnet phase transition in lightly doped manganites

    Get PDF
    Magnetic and structural phase diagrams of the La₀.₈₈MnOx, La₁₋xSrx(Mn₁₋x/₂Nbx/₂)O₃, Nd₁₋xCaxMnO₃, and Bi₁₋xCaxMnO₃ series constructed on the basis of x-ray, neutron powder diffraction, Young’s modulus, magnetization and resistivity measurements are presented. It is shown that the main factor controlling the antiferromagnet–ferromagnet phase transition in the manganites is a type of an orbital state. The results are discussed in the framework of structurally driven magnetic phase separation model
    corecore