230 research outputs found
Coulomb Drag Between Parallel Ballistic Quantum Wires
The Coulomb drag between parallel, {\it ballistic} quantum wires is studied
theoretically in the presence of a perpendicular magnetic field B. The
transresistance R_D shows peaks as a function of the Fermi level and splitting
energy between the 1D subbands of the wires. The sharpest peaks appear when the
Fermi level crosses the subband extrema so that the Fermi momenta are small.
Two other kinds of peaks appear when either {\it intra}- or {\it inter}-subband
transitions of electrons have maximum probability; the {\it intra}-subband
transitions correspond to a small splitting energy. R_D depends on the field B
in a nonmonotonic fashion: it decreases with B, as a result of the suppression
of backscattering, and increases sharply when the Fermi level approaches the
subband bottoms and the suppression is outbalanced by the increase of the
Coulomb matrix elements and of the density of states.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figures. Phys.
Rev. B,in pres
Negative Electron-electron Drag Between Narrow Quantum Hall Channels
Momentum transfer due to Coulomb interaction between two parallel,
two-dimensional, narrow, and spatially separated layers, when a current
I_{drive} is driven through one layer, is studied in the presence of a
perpendicular magnetic field B. The current induced in the drag layer,
I_{drag}, is evaluated self-consistently with I_{drive} as a parameter.
I_{drag} can be positive or negative depending on the value of the filling
factor \nu of the highest occupied bulk Landau level (LL). For a fully occupied
LL, I_{drag} is negative, i.e., it flows opposite to I_{drive}, whereas it is
positive for a half-filled LL. When the circuit is opened in the drag layer, a
voltage \Delta V_{drag} develops in it; it is negative for a half-filled LL and
positive for a fully occupied LL. This positive \Delta V_{drag}, expressing a
negative Coulomb drag, results from energetically favored near-edge inter-LL
transitions that occur when the highest occupied bulk LL and the LL just above
it become degenerate.Comment: Text file in Latex/Revtex/preprint format, 7 separate PS figures,
Physical Review B, in pres
Acceptor binding energies in GaN and AlN
We employ effective mass theory for degenerate hole-bands to calculate the
acceptor binding energies for Be, Mg, Zn, Ca, C and Si substitutional acceptors
in GaN and AlN. The calculations are performed through the 66
Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ)
and zincblende (ZB) crystal phases, respectively. An analytic representation
for the acceptor pseudopotential is used to introduce the specific nature of
the impurity atoms. The energy shift due to polaron effects is also considered
in this approach. The ionization energy estimates are in very good agreement
with those reported experimentally in WZ-GaN. The binding energies for ZB-GaN
acceptors are all predicted to be shallower than the corresponding impurities
in the WZ phase. The binding energy dependence upon the crystal field splitting
in WZ-GaN is analyzed. Ionization levels in AlN are found to have similar
`shallow' values to those in GaN, but with some important differences, which
depend on the band structure parameterizations, especially the value of crystal
field splitting used.Comment: REVTEX file - 1 figur
Spin-Lattice Relaxation in Si Quantum Dots
We consider spin-lattice relaxation processes for electrons trapped in
lateral Si quantum dots in a inversion layer. Such dots are
characterized by strong confinement in the direction perpendicular to the
surface and much weaker confinement in the lateral direction. The spin
relaxation is assumed to be due to the modulation of electron -factor by the
phonon-induced strain, as was shown previously for the shallow donors. The
results clearly indicate that the specific valley structure of the ground
electron state in Si quantum dots causes strong anisotropy for both the
one-phonon and two-phonon spin relaxation rates. In addition, it gives rise to
a partial suppression of the two-phonon relaxation in comparison to the spin
relaxation of donor electrons.Comment: RevTex file, 3 PS figure
Binding Energy of Charged Excitons in ZnSe-based Quantum Wells
Excitons and charged excitons (trions) are investigated in ZnSe-based quantum
well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of
magneto-optical spectroscopy. Binding energies of negatively () and positively
(X+) charged excitons are measured as functions of quantum well width, free
carrier density and in external magnetic fields up to 47 T. The binding energy
of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well
width from 190 to 29 A. The binding energies of X+ are about 25% smaller than
the binding energy in the same structures. The magnetic field behavior of and
X+ binding energies differ qualitatively. With growing magnetic field strength,
increases its binding energy by 35-150%, while for X+ it decreases by 25%.
Zeeman spin splittings and oscillator strengths of excitons and trions are
measured and discussed
Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals
The structure of the electron quantum size levels in spherical nanocrystals
is studied in the framework of an eight--band effective mass model at zero and
weak magnetic fields. The effect of the nanocrystal surface is modeled through
the boundary condition imposed on the envelope wave function at the surface. We
show that the spin--orbit splitting of the valence band leads to the
surface--induced spin--orbit splitting of the excited conduction band states
and to the additional surface--induced magnetic moment for electrons in bare
nanocrystals. This additional magnetic moment manifests itself in a nonzero
surface contribution to the linear Zeeman splitting of all quantum size energy
levels including the ground 1S electron state. The fitting of the size
dependence of the ground state electron g factor in CdSe nanocrystals has
allowed us to determine the appropriate surface parameter of the boundary
conditions. The structure of the excited electron states is considered in the
limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Antiferromagnet-ferromagnet phase transition in lightly doped manganites
Magnetic and structural phase diagrams of the La₀.₈₈MnOx, La₁₋xSrx(Mn₁₋x/₂Nbx/₂)O₃,
Nd₁₋xCaxMnO₃, and Bi₁₋xCaxMnO₃ series constructed on the basis of x-ray, neutron powder diffraction,
Young’s modulus, magnetization and resistivity measurements are presented. It is shown
that the main factor controlling the antiferromagnet–ferromagnet phase transition in the manganites
is a type of an orbital state. The results are discussed in the framework of structurally driven
magnetic phase separation model
- …