178 research outputs found

    Epitaxial checkerboard arrangement of nanorods in ZnMnGaO4 films studied by x-ray diffraction

    Full text link
    The intriguing nano-structural properties of a ZnMnGaO4 film epitaxially grown on MgO (001) substrate have been investigated using synchrotron radiation-based x-ray diffraction. The ZnMnGaO4 film consisted of a self-assembled checkerboard (CB) structure with perfectly aligned and regularly spaced vertical nanorods. The lattice parameters of the orthorhombic and rotated tetragonal phases of the CB structure were analyzed using H-K, H-L, and K-L cross sections of the reciprocal space maps measured around various symmetric and asymmetric reflections of the spinel structure. We demonstrate that the symmetry of atomic displacements at the phases boundaries provides the means for coherent coexistence of two domains types within the volume of the film

    Electron cyclotron mass in undoped CdTe/CdMnTe quantum wells

    Full text link
    Optically detected cyclotron resonance of two-dimensional electrons has been studied in nominally undoped CdTe/(Cd,Mn)Te quantum wells. The enhancement of carrier quantum confinement results in an increase of the electron cyclotron mass from 0.099m0m_0 to 0.112m0m_0 with well width decreasing from 30 down to 3.6 nm. Model calculations of the electron effective mass have been performed for this material system and good agreement with experimental data is achieved for an electron-phonon coupling constant α\alpha =0.32

    High carrier mobility in transparent Ba1-xLaxSnO3 crystals with a wide band gap

    Full text link
    We discovered that perovskite (Ba,La)SnO3 can have excellent carrier mobility even though its band gap is large. The Hall mobility of Ba0.98La0.02SnO3 crystals with the n-type carrier concentration of \sim 8-10\times10 19 cm-3 is found to be \sim 103 cm2 V-1s-1 at room temperature, and the precise measurement of the band gap \Delta of a BaSnO3 crystal shows \Delta=4.05 eV, which is significantly larger than those of other transparent conductive oxides. The high mobility with a wide band gap indicates that (Ba,La)SnO3 is a promising candidate for transparent conductor applications and also epitaxial all-perovskite multilayer devices

    Coupling between magnon and ligand-field excitations in magnetoelectric Tb3Fe5O12 garnet

    Full text link
    The spectra of far-infrared transmission in Tb3Fe5O12 magnetoelectric single crystals have been studied in the range between 15 and 100 cm-1, in magnetic fields up to 10 T, and for temperatures between 5 and 150 K. We attribute some of the observed infrared-active excitations to electric-dipole transitions between ligand-field split states of Tb3+ ions. Anticrossing between the magnetic exchange excitation and the ligand-field transition occurs at the temperature between 60 and 80 K. The corresponding coupling energy for this interaction is 6 cm-1. Temperature-induced softening of the hybrid IR excitation correlates with the increase of the static dielectric constant. We discuss the possibility for hybrid excitations of magnons and ligand-field states and their possible connection to the magnetoelectric effect in Tb3Fe5O12.Comment: submitted to Phys. Rev. B on May 15th, 201

    Acceptor binding energies in GaN and AlN

    Full text link
    We employ effective mass theory for degenerate hole-bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×\times 6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zincblende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ-GaN. The binding energies for ZB-GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding energy dependence upon the crystal field splitting in WZ-GaN is analyzed. Ionization levels in AlN are found to have similar `shallow' values to those in GaN, but with some important differences, which depend on the band structure parameterizations, especially the value of crystal field splitting used.Comment: REVTEX file - 1 figur

    Optical identification of hybrid magnetic and electric excitations in Dy3Fe5O12 garnet

    Full text link
    Far-infrared spectra of magneto-dielectric Dy3Fe5O12 garnet were studied between 13 and 100 cm-1 and at low temperatures between 5 and 80 K. A combination of transmission, reflectivity, and rotating analyzer ellipsometry was used to unambiguously identify the type of the dipole activity of the infrared modes. In addition to purely dielectric and magnetic modes, we observed several hybrid modes with a mixed magnetic and electric dipole activity. These modes originate from the superexchange between magnetic moments of Fe and Dy ions. Using 4x4 matrix formalism for materials with Mu=/=1, we modeled the experimental optical spectra and determined the far-infrared dielectric and magnetic permeability functions. The matching condition Mu(Wh)*Se=Eps(Wh)*Sm for the oscillator strengths Se(m) explains the observed vanishing of certain hybrid modes at Wh in reflectivity.Comment: paper and supplement appendi

    Development of an eight-band theory for quantum-dot heterostructures

    Get PDF
    We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot heterostructures (QDHs) in Burt's envelope-function representation. The 8x8 radial Hamiltonian and the boundary conditions for the Schroedinger equation are obtained for spherical QDHs. Boundary conditions for symmetrized and nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are commonly used to match the wave functions found from the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are calculated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions of an electron and a hole and, consequently, the energies of both intraband and interband transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected], [email protected]

    The dynamics of the population and peculiarities of the morphometric structure of Melophagus ovinus (Diptera, Hippoboscidae) in Ukraine

    Get PDF
    The indices of the Melophagus ovinus (Linnaeus, 1758) population in Ukraine, and also the peculiarities of morphological and metric structure of the insects’ body at all the stages of their development within the conditions of the surveyed region were investigated. New data on morphometric differential signs of sexually mature males and females of sheep bloodsuckers were obtained. We established that M. ovinus is significantly widespread in Poltava and Zaporizhzhia regions, and parasitizes 26.1% of the examined sheep stock with the infection intensity of 92.7 ± 1.4 specimens and abundance – 24.7 specimens on one animal. The dynamics of M. ovinus population at different stages of development was characterized by the highest abundance of sexually mature males (11.1 specimens on one animal) and females (8.9 specimens). The given index concerning pupae and larvae was considerably lower (4.2 and 0.5 specimens on one animal). It was found that post-embryonic and adult development stages of M. ovinus differ in their metric indices.The length and width of the pupae were 17.4% and 13.2% larger than those of the larvae. The sizes of males and females relative to the indices of body length, the length and width of head, thoracic, and abdominal segments, the length of maxillary palpus and the length and width of the proboscis in fact differ in their values. The differential morphological species signs of M. ovinus are the form and location of the oculi, antennae, the structure of the head segment of the body, and the mouthparts, and of sexual dimorphism – the distance from the caudal segment of the copulatory apparatus to the rear of the insect’s last abdominal segment. The indices of the Melophagus ovinus (Linnaeus, 1758) population in Ukraine, and also the peculiarities of morphological and metric structure of the insects’ body at all the stages of their development within the conditions of the surveyed region were investigated. New data on morphometric differential signs of sexually mature males and females of sheep bloodsuckers were obtained. It was established that M. ovinus are significantly widespread in Poltava and Zaporizhzhia regions, and they parasitize 26.1% of the examined sheep stock with the infection intensity of 92.7 ± 1.4 specimens and abundance – 24.7 specimens on one animal. The dynamics of M. ovinus population at different stages of development was characterized by the highest abundance of sexually mature males (11.1 specimens) and females (8.9 specimens). The given index concerning pupae and larvae was considerably lower (4.2 and 0.5 specimens on one animal). It was found that post-embryonic and adult development stages of M. ovinus differ in their metric indices.The length and width of the pupae were 17.4% and 13.2% larger than those of the larvae. The sizes of males and females relative to the indices of body length, the length and width of head, thoracic, and abdominal segments, the length of maxillary palpus and the length and width of the proboscis in fact differ in their values. The differential morphological species signs of M. ovinus are the form and location of oculi, antennae, the structure of the head segment of the body, and the mouthparts, and of sexual dimorphism – the distance from the caudal segment of the copulatory apparatus to the rear of the insect’s last abdominal segment.

    Electromagnons in multiferroic RMn2O5 compounds and their microscopic origin

    Get PDF
    We summarize the existing experimental data on electromagnons in multiferroic RMn2O5 compounds, where R denotes a rare earth ion, Y or Bi, and discuss a realistic microscopic model of these materials based on assumption that the microscopic mechanism of magnetically-induced ferroelectricity and electromagnon absorption relies entirely on the isotropic Heisenberg exchange and magnetostrictive coupling of spins to a polar lattice mode and does not involve relativistic effects. This model explains many magnetic and optical properties of RMn2O5 manganites, such as the spin re-orientation transition, magnetically-induced polarisation, appearance of the electromagnon peak in the non-collinear spin state and the polarisation of light for which this peak is observed. We compare experimental and theoretical results on electromagnons in RMn2O5 and RMnO3 compounds.Comment: 20 pages, 9 figures, to be published in J. Phys.: Condens. Matter, special issue on multiferroic
    • 

    corecore